936 resultados para dynamic response parameters
Resumo:
COD discharges out of processes have increased in line with elevating brightness demands for mechanical pulp and papers. The share of lignin-like substances in COD discharges is on average 75%. In this thesis, a plant dynamic model was created and validated as a means to predict COD loading and discharges out of a mill. The assays were carried out in one paper mill integrate producing mechanical printing papers. The objective in the modeling of plant dynamics was to predict day averages of COD load and discharges out of mills. This means that online data, like 1) the level of large storage towers of pulp and white water 2) pulp dosages, 3) production rates and 4) internal white water flows and discharges were used to create transients into the balances of solids and white water, referred to as “plant dynamics”. A conversion coefficient was verified between TOC and COD. The conversion coefficient was used for predicting the flows from TOC to COD to the waste water treatment plant. The COD load was modeled with similar uncertainty as in reference TOC sampling. The water balance of waste water treatment was validated by the reference concentration of COD. The difference of COD predictions against references was within the same deviation of TOC-predictions. The modeled yield losses and retention values of TOC in pulping and bleaching processes and the modeled fixing of colloidal TOC to solids between the pulping plant and the aeration basin in the waste water treatment plant were similar to references presented in literature. The valid water balances of the waste water treatment plant and the reduction model of lignin-like substances produced a valid prediction of COD discharges out of the mill. A 30% increase in the release of lignin-like substances in the form of production problems was observed in pulping and bleaching processes. The same increase was observed in COD discharges out of waste water treatment. In the prediction of annual COD discharge, it was noticed that the reduction of lignin has a wide deviation from year to year and from one mill to another. This made it difficult to compare the parameters of COD discharges validated in plant dynamic simulation with another mill producing mechanical printing papers. However, a trend of moving from unbleached towards high-brightness TMP in COD discharges was valid.
Resumo:
Technical analysis of Low Voltage Direct Current (LVDC) distribution systems shows that in LVDC transmission the customer voltage quality is higher. One of the problems in LVDC distribution networks that converters both ends of the DC line are required. Because of the converters produce not pure DC voltage, but some fluctuations as well, the huge electrolytic capacitors are required to reduce voltage distortions in the DC-side. This thesis master’s thesis is focused on calculating required DC-link capacitance for LVDC transmission and estimation of the influence of different parameters on the voltage quality. The goal is to investigate the methods of the DC-link capacitance estimation and location in the transmission line.
Resumo:
Current technology trends in medical device industry calls for fabrication of massive arrays of microfeatures such as microchannels on to nonsilicon material substrates with high accuracy, superior precision, and high throughput. Microchannels are typical features used in medical devices for medication dosing into the human body, analyzing DNA arrays or cell cultures. In this study, the capabilities of machining systems for micro-end milling have been evaluated by conducting experiments, regression modeling, and response surface methodology. In machining experiments by using micromilling, arrays of microchannels are fabricated on aluminium and titanium plates, and the feature size and accuracy (width and depth) and surface roughness are measured. Multicriteria decision making for material and process parameters selection for desired accuracy is investigated by using particle swarm optimization (PSO) method, which is an evolutionary computation method inspired by genetic algorithms (GA). Appropriate regression models are utilized within the PSO and optimum selection of micromilling parameters; microchannel feature accuracy and surface roughness are performed. An analysis for optimal micromachining parameters in decision variable space is also conducted. This study demonstrates the advantages of evolutionary computing algorithms in micromilling decision making and process optimization investigations and can be expanded to other applications
Resumo:
Evergreen trees in the Mediterranean region must cope with a wide range of environmental stresses from summer drought to winter cold. The mildness of Mediterranean winters can periodically lead to favourable environmental conditions above the threshold for a positive carbon balance, benefitting evergreen woody species more than deciduous ones. The comparatively lower solar energy input in winter decreases the foliar light saturation point. This leads to a higher susceptibility to photoinhibitory stress especially when chilly (< 12 C) or freezing temperatures (< 0 C) coincide with clear skies and relatively high solar irradiances. Nonetheless, the advantage of evergreen species that are able to photosynthesize all year round where a significant fraction can be attributed to winter months, compensates for the lower carbon uptake during spring and summer in comparison to deciduous species. We investigated the ecophysiological behaviour of three co-occurring mature evergreen tree species (Quercus ilex L., Pinus halepensis Mill., and Arbutus unedo L.). Therefore, we collected twigs from the field during a period of mild winter conditions and after a sudden cold period. After both periods, the state of the photosynthetic machinery was tested in the laboratory by estimating the foliar photosynthetic potential with CO2 response curves in parallel with chlorophyll fluorescence measurements. The studied evergreen tree species benefited strongly from mild winter conditions by exhibiting extraordinarily high photosynthetic potentials. A sudden period of frost, however, negatively affected the photosynthetic apparatus, leading to significant decreases in key physiological parameters such as the maximum carboxylation velocity (Vc,max), the maximum photosynthetic electron transport rate (Jmax), and the optimal fluorometric quantum yield of photosystem II (Fv/Fm). The responses of Vc,max and Jmax were highly species specific, with Q. ilex exhibiting the highest and P. halepensis the lowest reductions. In contrast, the optimal fluorometric quantum yield of photosystem II (Fv/Fm) was significantly lower in A. unedo after the cold period. The leaf position played an important role in Q. ilex showing a stronger winter effect on sunlit leaves in comparison to shaded leaves. Our results generally agreed with the previous classifications of photoinhibition-tolerant (P. halepensis) and photoinhibitionavoiding (Q. ilex) species on the basis of their susceptibility to dynamic photoinhibition, whereas A. unedo was the least tolerant to photoinhibition, which was chronic in this species. Q. ilex and P. halepensis seem to follow contrasting photoprotective strategies. However, they seemed equally successful under the prevailing conditions exhibiting an adaptive advantage over A. unedo. These results show that our understanding of the dynamics of interspecific competition in Mediterranean ecosystems requires consideration of the physiological behaviour during winter which may have important implications for long-term carbon budgets and growth trends.
Resumo:
The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.
Resumo:
In this thesis, general approach is devised to model electrolyte sorption from aqueous solutions on solid materials. Electrolyte sorption is often considered as unwanted phenomenon in ion exchange and its potential as an independent separation method has not been fully explored. The solid sorbents studied here are porous and non-porous organic or inorganic materials with or without specific functional groups attached on the solid matrix. Accordingly, the sorption mechanisms include physical adsorption, chemisorption on the functional groups and partition restricted by electrostatic or steric factors. The model is tested in four Cases Studies dealing with chelating adsorption of transition metal mixtures, physical adsorption of metal and metalloid complexes from chloride solutions, size exclusion of electrolytes in nano-porous materials and electrolyte exclusion of electrolyte/non-electrolyte mixtures. The model parameters are estimated using experimental data from equilibrium and batch kinetic measurements, and they are used to simulate actual single-column fixed-bed separations. Phase equilibrium between the solution and solid phases is described using thermodynamic Gibbs-Donnan model and various adsorption models depending on the properties of the sorbent. The 3-dimensional thermodynamic approach is used for volume sorption in gel-type ion exchangers and in nano-porous adsorbents, and satisfactory correlation is obtained provided that both mixing and exclusion effects are adequately taken into account. 2-Dimensional surface adsorption models are successfully applied to physical adsorption of complex species and to chelating adsorption of transition metal salts. In the latter case, comparison is also made with complex formation models. Results of the mass transport studies show that uptake rates even in a competitive high-affinity system can be described by constant diffusion coefficients, when the adsorbent structure and the phase equilibrium conditions are adequately included in the model. Furthermore, a simplified solution based on the linear driving force approximation and the shrinking-core model is developed for very non-linear adsorption systems. In each Case Study, the actual separation is carried out batch-wise in fixed-beds and the experimental data are simulated/correlated using the parameters derived from equilibrium and kinetic data. Good agreement between the calculated and experimental break-through curves is usually obtained indicating that the proposed approach is useful in systems, which at first sight are very different. For example, the important improvement in copper separation from concentrated zinc sulfate solution at elevated temperatures can be correctly predicted by the model. In some cases, however, re-adjustment of model parameters is needed due to e.g. high solution viscosity.
Resumo:
The objective of this study was to model mathematically and to simulate the dynamic behavior of an auger-type fertilizer applicator (AFA) in order to use the variable-rate application (VRA) and reduce the coefficient of variation (CV) of the application, proposing an angular speed controller θ' for the motor drive shaft. The input model was θ' and the response was the fertilizer mass flow, due to the construction, density of fertilizer, fill factor and the end position of the auger. The model was used to simulate a control system in open loop, with an electric drive for AFA using an armature voltage (V A) controller. By introducing a sinusoidal excitation signal in V A with amplitude and delay phase optimized and varying θ' during an operation cycle, it is obtained a reduction of 29.8% in the CV (constant V A) to 11.4%. The development of the mathematical model was a first step towards the introduction of electric drive systems and closed loop control for the implementation of AFA with low CV in VRA.
Resumo:
View angle and directional effects significantly affect reflectance and vegetation indices, especially when daily images collected by large field-of-view (FOV) sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) are used. In this study, the PROSAIL radiative transfer model was chosen to evaluate the impact of the geometry of data acquisition on soybean reflectance and two vegetation indices (Normalized Difference Vegetation Index - NDVI and Enhanced Vegetation Index -EVI) by varying biochemical and biophysical parameters of the crop. Input values for PROSAIL simulation were based on the literature and were adjusted by the comparison between simulated and real satellite soybean spectra acquired by the MODIS/Terra and hyperspectral Hyperion/Earth Observing-One (EO-1). Results showed that the influence of the view angle and view direction on reflectance was stronger with decreasing leaf area index (LAI) and chlorophyll concentration. Because of the greater dependence on the near-infrared reflectance, the EVI was much more sensitive to viewing geometry than NDVI presenting larger values in the backscattering direction. The contrary was observed for NDVI in the forward scattering direction. In relation to the LAI, NDVI was much more isotropic for closed soybean canopies than for incomplete canopies and a contrary behavior was verified for EVI.
Resumo:
Estimates of broiler welfare have subjective character. Nowadays, researchers seek non-invasive features or indicators that may describe this condition in animal production. The aim of this study was to identify acoustic parameters to estimate broiler welfare using the following five vocalization acoustic parameters: energy, spectral centroid, bandwidth, first formant, and second formant. The database that generated the model was obtained from a field experiment with 432 broilers, which half were Cobb® and half, Ross® breed, from day 21 to 42, containing bird vocalizations under either welfare or stress conditions. The results of the experiment generated responses to the tested conditions of gender, genetic strain, and welfare. The proposed model was based on the specific response of mean weights for each situation of stress and well-being. From the results, a model was developed to estimate the welfare condition of broilers from the registered information linked to their vocalization.
Resumo:
Filtration is a widely used unit operation in chemical engineering. The huge variation in the properties of materials to be ltered makes the study of ltration a challenging task. One of the objectives of this thesis was to show that conventional ltration theories are di cult to use when the system to be modelled contains all of the stages and features that are present in a complete solid/liquid separation process. Furthermore, most of the ltration theories require experimental work to be performed in order to obtain critical parameters required by the theoretical models. Creating a good overall understanding of how the variables a ect the nal product in ltration is somewhat impossible on a purely theoretical basis. The complexity of solid/liquid separation processes require experimental work and when tests are needed, it is advisable to use experimental design techniques so that the goals can be achieved. The statistical design of experiments provides the necessary tools for recognising the e ects of variables. It also helps to perform experimental work more economically. Design of experiments is a prerequisite for creating empirical models that can describe how the measured response is related to the changes in the values of the variable. A software package was developed that provides a ltration practitioner with experimental designs and calculates the parameters for linear regression models, along with the graphical representation of the responses. The developed software consists of two software modules. These modules are LTDoE and LTRead. The LTDoE module is used to create experimental designs for di erent lter types. The lter types considered in the software are automatic vertical pressure lter, double-sided vertical pressure lter, horizontal membrane lter press, vacuum belt lter and ceramic capillary action disc lter. It is also possible to create experimental designs for those cases where the variables are totally user de ned, say for a customized ltration cycle or di erent piece of equipment. The LTRead-module is used to read the experimental data gathered from the experiments, to analyse the data and to create models for each of the measured responses. Introducing the structure of the software more in detail and showing some of the practical applications is the main part of this thesis. This approach to the study of cake ltration processes, as presented in this thesis, has been shown to have good practical value when making ltration tests.
Resumo:
Filtration is a widely used unit operation in chemical engineering. The huge variation in the properties of materials to be ltered makes the study of ltration a challenging task. One of the objectives of this thesis was to show that conventional ltration theories are di cult to use when the system to be modelled contains all of the stages and features that are present in a complete solid/liquid separation process. Furthermore, most of the ltration theories require experimental work to be performed in order to obtain critical parameters required by the theoretical models. Creating a good overall understanding of how the variables a ect the nal product in ltration is somewhat impossible on a purely theoretical basis. The complexity of solid/liquid separation processes require experimental work and when tests are needed, it is advisable to use experimental design techniques so that the goals can be achieved. The statistical design of experiments provides the necessary tools for recognising the e ects of variables. It also helps to perform experimental work more economically. Design of experiments is a prerequisite for creating empirical models that can describe how the measured response is related to the changes in the values of the variable. A software package was developed that provides a ltration practitioner with experimental designs and calculates the parameters for linear regression models, along with the graphical representation of the responses. The developed software consists of two software modules. These modules are LTDoE and LTRead. The LTDoE module is used to create experimental designs for di erent lter types. The lter types considered in the software are automatic vertical pressure lter, double-sided vertical pressure lter, horizontal membrane lter press, vacuum belt lter and ceramic capillary action disc lter. It is also possible to create experimental designs for those cases where the variables are totally user de ned, say for a customized ltration cycle or di erent piece of equipment. The LTRead-module is used to read the experimental data gathered from the experiments, to analyse the data and to create models for each of the measured responses. Introducing the structure of the software more in detail and showing some of the practical applications is the main part of this thesis. This approach to the study of cake ltration processes, as presented in this thesis, has been shown to have good practical value when making ltration tests.
Resumo:
In many industrial applications, such as the printing and coatings industry, wetting of porous materials by liquids includes not only imbibition and permeation into the bulk but also surface spreading and evaporation. By understanding these phenomena, valuable information can be obtained for improved process control, runnability and printability, in which liquid penetration and subsequent drying play important quality and economic roles. Knowledge of the position of the wetting front and the distribution/degree of pore filling within the structure is crucial in describing the transport phenomena involved. Although exemplifying paper as a porous medium in this work, the generalisation to dynamic liquid transfer onto a surface, including permeation and imbibition into porous media, is of importance to many industrial and naturally occurring environmental processes. This thesis explains the phenomena in the field of heatset web offset printing but the content and the analyses are applicable in many other printing methods and also other technologies where water/moisture monitoring is crucial in order to have a stable process and achieve high quality end products. The use of near-infrared technology to study the water and moisture response of porous pigmented structures is presented. The use of sensitive surface chemical and structural analysis, as well as the internal structure investigation of a porous structure, to inspect liquid wetting and distribution, complements the information obtained by spectroscopic techniques. Strong emphasis has been put on the scale of measurement, to filter irrelevant information and to understand the relationship between interactions involved. The near-infrared spectroscopic technique, presented here, samples directly the changes in signal absorbance and its variation in the process at multiple locations in a print production line. The in-line non-contact measurements are facilitated by using several diffuse reflectance probes, giving the absolute water/moisture content from a defined position in the dynamic process in real-time. The nearinfrared measurement data illustrate the changes in moisture content as the paper is passing through the printing nips and dryer, respectively, and the analysis of the mechanisms involved highlight the roles of the contacting surfaces and the relative liquid carrier properties of both non-image and printed image areas. The thesis includes laboratory studies on wetting of porous media in the form of coated paper and compressed pigment tablets by mono-, dual-, and multi-component liquids, and paper water/moisture content analysis in both offline and online conditions, thus also enabling direct sampling of temporal water/moisture profiles from multiple locations. One main focus in this thesis was to establish a measurement system which is able to monitor rapid changes in moisture content of paper. The study suggests that near-infrared diffuse reflectance spectroscopy can be used as a moisture sensitive system and to provide accurate online qualitative indicators, but, also, when accurately calibrated, can provide quantification of water/moisture levels, its distribution and dynamic liquid transfer. Due to the high sensitivity, samples can be measured with excellent reproducibility and good signal to noise ratio. Another focus of this thesis was on the evolution of the moisture content, i.e. changes in moisture content referred to (re)wetting, and liquid distribution during printing of coated paper. The study confirmed different wetting phases together with the factors affecting each phase both for a single droplet and a liquid film applied on a porous substrate. For a single droplet, initial capillary driven imbibition is followed by equilibrium pore filling and liquid retreat by evaporation. In the case of a liquid film applied on paper, the controlling factors defining the transportation were concluded to be the applied liquid volume in relation to surface roughness, capillarity and permeability of the coating giving the liquid uptake capacity. The printing trials confirmed moisture gradients in the printed sheet depending on process parameters such as speed, fountain solution dosage and drying conditions as well as the printed layout itself. Uneven moisture distribution in the printed sheet was identified to be one of the sources for waving appearance and the magnitude of waving was influenced by the drying conditions.
Resumo:
The American bullfrog (Rana catesbeiana), recently named Lithobates catesbeianus is currently farmed for commercial purposes throughout various regions of Brazil. Stressful situations such as problems of management, inadequate facilities and environmental changes with consequent reduction of immunity are common in intensive production. The assessments of these situations of stress allow us detect these problems decreasing the injuries causes by confinement. The main objective of this study was to use the biological markers of plasma cortisol and glucose level and hematological parameters to evaluate the response of bullfrog tadpoles submitted to stressed mechanisms of capture and hypoxia. The animals were subjected to three treatments: stress due to individual capture with a hand net; stress due to batch capture with a hand net; and stress due to capture by emptying. The results obtained demonstrated that there were no statistically significant differences in the parameters tested when comparing the treatments with and without exposure to air (normoxia and hypoxia). Based on these results we can conclude that the stressful stimuli tested were not adequate to alter the biomarker tested. For the cortisol, probably this should have occurred due to the synergistic action between this hormone and thyroxin, which induces metamorphosis in these animals.
Resumo:
The aims of the present study were to evaluate the performance of Jersey and Holstein cows under different rainfall conditions (dry and rainy seasons) by monitoring aspects related to subclinical mastitis (somatic cell count, microbiological isolation, type of isolated pathogen), milk quality (lactose, protein, fat, total solids) and production (mean milk production) of both breeds. The study was carried out in a dairy farm located in the state of São Paulo, Brazil. Eight visitations were done to the farm, four in a period of high rainfall and four in a period of low rainfall. Milk samples were collected from 79 Holstein cows and 37 Jersey cows for electronic somatic cell count and determination of the main milk components (protein, fat, total solids, lactose). Milk fat, protein, total solids and production were influenced by breed and the season, with similar tendencies for both breeds in both seasons. Somatic cell count (SCC) showed similar results for both breeds. Holstein cows with intramammary infections (IMI) presented a higher increase in SCC when compared to Jersey cows (P<0.001). In the dry season, 53 animals had IMI in at least one month during the study, which 32 were Holstein and 21 were Jersey cows. In the rainy season, 65 animals had intramammary infection, being 43 Holstein and 22 Jersey cows. The frequency of IMI cases was larger in the rainy season than in the dry season. Jersey cows had a lower chance of showing IMI signs and symptoms than Holstein cows in the rainy season (odds ratio=0.52). The larger number of IMI cases in the rainy season may have led to a lower milk lactose rate for both breeds, thus milk lactose rate can be considered an indicator of IMI status. There was prevalence of contagious pathogens overall in the study. The applied model showed that environmental pathogens were more frequently isolated from the breed Jersey, regardless of the study season. There seems to be differences in the immune response of Jersey and Holstein breeds.
Resumo:
The present study aimed to assess the CD4, CD8 and γδ blood levels for Curraleiro Pé-duro, as well as the specific IFN-γ response after BCG vaccination using flow cytometry. The specific immune response against BCG was also evaluated by tuberculin skin test, performed before and 45 days after the vaccination. For comparison purposes, the same parameters were investigated on Nellore calves, an exotic bovine with resistance previously demonstrated. Naturally, Curraleiro Pé-duro animals had greater levels of CD4, CD8 and γδ lymphocytes (p<0.05). In response to vaccine, Curraleiro Pé-duro showed greater ability to respond specifically to BCG, generating resistance profile (Th1), evidenced by greater number of antigen specific CD4+ cells producing IFN-γ (p<0.05) and also higher tuberculin skin test reaction (p<0.05). Additionally, vaccinated Curraleiro Pé-duro calves had higher CD4 cells numbers than both Nellore control (p<0.05) and vaccinated groups (p<0.05). Curraleiro Pé-duro calves' higher basal lymphocytes blood level and stronger response in both IFN-γ and tuberculin skin test parameters probably play a positive role on protection/resistance to Mycobacterium bovis.