969 resultados para doxorubicin derivative


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five structurally related pimarane diterpenes isolated from the roots of Viguiera arenaria and a further compound obtained by chemical derivatization were evaluated in vitro against the trypomastigote forms of Trypanosoma cruzi. The natural compound ent-15-pimarene-8 beta,19-diol and the derivative ent-8(14),15-pimaradiene-3 beta-acetoxy showed the highest trypanocidal activity, displaying IC50 values of 116.5 +/- 1.21 and 149.3 +/- 1.07 mu M, respectively, while the positive control, violet gentian, showed an IC50 of 76 mu M. Based on the results, it can be concluded that minor structural differences among the tested diterpenes influence significantly the trypanocidal activity, thus bringing new perspectives to the establishment of structure-activity relationships among this type of metabolites to the treatment of Chagas` disease. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Baccharis dracunculifolia De Candole (Asteraceae), a native plant from the Brazilian ""cerrado"", is widely used in folk medicine as an anti-inflammatory agent and for the treatment of gastrointestinal diseases. B. dracunculifolia has been described as the most important plant source of propolis in southeastern Brazil, which is called green propolis due to its color. The aim of the present study was to evaluate the mutagenic and antimutagenic effects of the ethyl acetate extract of B. dracunculifolia leaves (Bd-EAE) on Chinese hamster ovary cells. On one hand, the results showed a significant increase in the frequencies of chromosome aberrations at the highest Bd-EAE concentration tested (100 mu g/mL). On the other hand, the lowest Bd-EAE concentration tested (12.5 mu/mL) significantly reduced the chromosome damage induced by the chemotherapeutic agent doxorubicin. The present results indicate that Bd-EAE has the characteristics of a so-called Janus compound, that is, Bd-EAE is mutagenic at higher concentrations, whereas it displays a chemopreventive effect on doxorubicin-induced mutagenicity at lower concentrations. The constituents of B. dracunculifolia responsible for its mutagenic and antimutagenic effects are probably flavonoids and phenylpropanoids, since these compounds can act either as pro-oxidants or as free radical scavengers depending on their concentration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study was developed a new nano drug delivery system (NDDS) based on association of biodegradable surfactants with biocompatible magnetic fluid of maguemita citrate derivative. This formulation consists in a magnetic emulsion with nanostructured colloidal particles. Preliminary in vitro experiments showed that the formulation presents a great potential for synergic application in the topical release of photosensitizer drug (PS) and excellent target tissue properties in the photodynamic therapy (PDT) combined with hyperthermia (HPT) protocols. The physical chemistry characterization and in vitro assays were carried out by Zn(II) Phtalocyanine (ZnPc) photosensitizer incorporated into NDDS in the absence and the presence of magnetic fluid, showed good results and high biocompatibility. In vitro experiments were accomplished by tape-stripping protocols for quanti. cation of drug association with different skin tissue layers. This technique is a classical method for analyses of drug release in stratum corneum and epidermis+ dermis skin layers. The NDDS formulations were applied directly in pig skin (tissue model) fixed in the cell`s Franz device with receptor medium container with a PBS/EtOH 20% solution (10mM, pH 7.4) at 37 degrees C. After 12 h of topical administration stratum corneum was removed from fifty tapes and the ZnPc retained was evaluated by solvent extraction in dimetil-sulphoxide under ultrasonic bath. These results indicated that magnetic nanoemulsion (MNE) increase the drug release on the deeper skin layers when compared with classical formulation in the absence of magnetic particles. This could be related with the increase of biocompatibility of NDDS due to the great affinity for the polar extracelullar matrix in the skin and also for the increase in the drug partition inside of corneocites wall. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two kaurane diterpenes, ent-kaur-16(17)-en-19-oic acid (KA) and 15-beta-isovaleryloxy-ent-kaur-16(17)-en-19-oic acid (KA-Ival), isolated from Aspilia foliacea, and the methyl ester derivative of KA (KA-Me) were evaluated against oral pathogens. KA was the most active compound, with MIC values of 10 mu g mL(-1) against the following microorganisms: Streptococcus sobrinus, Streptococcus mutans, Streptococcus mitis, Streptococcus sanguinis, and Lactobacillus casei. However, KA did not show significant activity against Streptococcus salivarius and Enterococcus faecalis, with MIC values equal to 100 and 200 mu g mL(-1), respectively. Our results show that KA has potential to be used as a prototype for the discovery of new effective anti-infection agents against microorganisms responsible for caries and periodontal diseases. Moreover, these results allow to conclude that minor structural differences among these diterpenes significantly influence their antimicrobial activity, bringing new perspectives to studies on the structure-activity relationship of this type of metabolites with respect to caries and periodontal diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of biodegradable natural polymers has increased due to the over-solid packaging waste. In this study, a chemical modification of the casein molecule was performed by Maillard reaction, and the modified polymer was evaluated by polyacrylamide gel electrophoresis (PAGE), thermogravimetry/derivative thermogravimetry (TG/DTG), FT-IR, and (1)H-NMR spectroscopy. Subsequently, films based on the modified casein were obtained and characterized by mechanical analysis, water vapor transmission, and erosion behavior. The PAGE results suggested an increase of molecular mass of the modified polymer, and FT-IR spectroscopy data indicated inclusion of C-OH groups into this molecule. The TG/DTG curves of modified casein presented a different thermal decomposition profile compared to the individual compounds. Mechanical tests showed that the chemical modification of the casein molecules provided higher elongation rates (45.5%) to the films, suggesting higher plasticity, than the original molecules (13.4%). The modified casein films presented higher permeability (0.505 +/- A 0.006 mu g/h mm(3)) than the original polymer (0.387 +/- A 0.006 mu g/h mm(3)) films at 90% relative humidity (RH). In pH 1.2, modified casein films presented higher erosion rates (32.690 +/- A 0.692%) than casein films (19.910 +/- A 2.083%) after 8 h, suggesting an increased sensibility for erosion of the modified casein films in acid environment. In water (pH 7.0), the films erosion profiles were similar. Those findings indicate that the modification of molecule by Maillard reaction provided films more plastic, hydrophilic, and sensitive to erosion in acid environment, suggesting that a new polymer with changed properties was founded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Baccharin (3-prenyl-4-(dihydrocinnamoyloxy)cinnamic acid) is an important chemical compound isolated from the aerial parts of Baccharis dracunculifolia DC (Asteraceae), a native plant of South America, and the most important plant source of Brazilian green propolis. The present study was designed to investigate the ability of baccharin to modulate the genotoxic effects induced by doxorubicin and methyl methanesulphonate in male Swiss mice using the micronucleus and comet assays, respectively. The different doses of baccharin [0.12, 0.24 and 0.48 mg/kg body-weight (b.w.)] were administered simultaneously to doxorubicin (micronucleus test; 15 mg/kg b.w.) and to methyl methanesulphonate (comet assay; 40 mg/kg b.w.). The results showed a significant decrease in the frequency of micronucleated polychromatic erythrocytes in animals treated with baccharin and doxorubicin compared to animals that received only doxorubicin. This reduction ranged from 39.8% to 50.7% in the micronucleus test. The extent of DNA damage in liver cells was significantly lower in animals treated with different concentrations of baccharin combined with methyl methanesulphonate in comparison with the damage observed for animals treated only with methyl methanesulphonate. These differences resulted in a significant reduction in the extent of DNA damage, which ranged from 47.8% to 60.6%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methionine is a component of one-carbon metabolism and a precursor of S-adenosylmethionine (SAM), the methyl donor for DNA methylation. When methionine intake is high, an increase of S-adenosylmethionine (SAM) is expected. DNA methyltransferases convert SAM to S-adenosylhomocysteine (SAH). A high intracellular SAH concentration could inhibit the activity of DNA methyltransferases. Therefore, high methionine ingestion could induce DNA damage and change the methylation pattern of tumor suppressor genes. This study investigated the genotoxicity of a methionine-supplemented diet. It also investigated the diet`s effects on glutathione levels, SAM and SAH concentrations and the gene methylation pattern of p53. Wistar rats received either a methionine-supplemented diet (2% methionine) or a control diet (0.3% methionine) for six weeks. The methionine-supplemented diet was neither genotoxic nor antigenotoxic to kidney cells, as assessed by the comet assay. However, the methionine-supplemented diet restored the renal glutathione depletion induced by doxorubicin. This fact may be explained by the transsulfuration pathway, which converts methionine to glutathione in the kidney. Methionine supplementation increased the renal concentration of SAH without changing the SAM/SAH ratio. This unchanged profile was also observed for DNA methylation at the promoter region of the p53 gene. Further studies are necessary to elucidate this diet`s effects on genomic stability and DNA methylation. (C) 2011 Elsevier ay. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Annatto (AN), a natural food colorant rich in carotenoids, has been reported as being an effective antioxidant, but little is known about its potential chemopreventive properties. In this Study, we evaluated the ability of AN to protect human hepatoma cells (HepG2) from micronucleus (MN) induction against three different mutagens: benzo(a)pyrene (B(a)P), doxorubicin (DXR), and methyl methanesulfonate (MMS). In an attempt to clarify the possible mechanism of anti mutagenicity of AN, three protocols of treatment were applied (pretreatment; simultaneous treatment, and post-treatment with AN following treatment with the mutagens). Also, cells exposed only to AN were assayed for cytotoxicity and mutagenicity. A dosage up to 10 mu g/ml of AN was devoid of mutagenic activity. Protective effects were seen on micronuclei induced by B(a)P and DXR using pre and simultaneous treatment, but AN had no significant effect on MN induction by MMS in any of the protocols. Our results also show that exposure of cells to concentrations of AN higher than 10 mu g/ml decreased cell viability. Taken together, our findings indicate that AN presents antimutagenic activity in vitro, but its protective effect is dependent on the mutagen and on type of treatment suggesting its potential use as a chemopreventive agent. Environ. Mol. Mutagen. 50:808-814, 2009. (C) 2009 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this study is to produce oleanolic acid derivatives by biotransformation process using Mucor rouxii and evaluate their antimicrobial activity against oral pathogens. The microbial transformation was carried out in shake flasks at 30A degrees C for 216 h with shaking at 120 rpm. Three new derivatives, 7 beta-hydroxy-3-oxo-olean-12-en-28-oic acid, 7 beta,21 beta-dihydroxy-3-oxo-olean-12-en-28-oic acid, and 3 beta,7 beta,21 beta-trihydroxyolean-12-en-28-oic acid, and one know compound, 21 beta-hydroxy-3-oxo-olean-12-en-28-oic acid, were isolated, and the structures were elucidated on the basis of spectroscopic analyses. The antimicrobial activity of the substrate and its transformed products was evaluated against five oral pathogens. Among these compounds, the derivative 21 beta-hydroxy-3-oxo-olean-12-en-28-oic acid displayed the strongest activity against Porphyromonas gingivalis, which is a primary etiological agent of periodontal disease. In an attempt to improve the antimicrobial activity of the derivative 21 beta-hydroxy-3-oxo-olean-12-en-28-oic acid, its sodium salt was prepared, and the minimum inhibitory concentration against P. gingivalis was reduced by one-half. The biotransformation process using M. rouxii has potential to be applied to the production of oleanolic acid derivatives. Research and antimicrobial activity evaluation of new oleanolic acid derivatives may provide an important contribution to the discovery of new adjunct agents for treatment of dental diseases such as dental caries, gingivitis, and periodontitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used various computational methodologies including molecular dynamics, density functional theory, virtual screening, ADMET predictions and molecular interaction field studies to design and analyze four novel potential inhibitors of farnesyltransferase (FTase). Evaluation of two proposals regarding their drug potential as well as lead compounds have indicated them as novel promising FTase inhibitors, with theoretically interesting pharmacotherapeutic profiles, when Compared to the very active and most cited FTase inhibitors that have activity data reported, which are launched drugs or compounds in clinical tests. One of our two proposals appears to be a more promising drug candidate and FTase inhibitor, but both derivative molecules indicate potentially very good pharmacotherapeutic profiles in comparison with Tipifarnib and Lonafarnib, two reference pharmaceuticals. Two other proposals have been selected with virtual screening approaches and investigated by LIS, which suggest novel and alternatives scaffolds to design future potential FTase inhibitors. Such compounds can be explored as promising molecules to initiate a research protocol in order to discover novel anticancer drug candidates targeting farnesyltransferase, in the fight against cancer. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acai, the fruit of a palm native to the Amazonian basin, is widely distributed in northern South America, where it has considerable economic importance. Whereas individual polyphenolics compounds in Acai have been extensively evaluated, studies of the intact fruit and its biological properties are lacking. Therefore, the present study was undertaken to investigate the in vivo genotoxicity of Acai and its possible antigenotoxicity on doxorubicin (DXR)-induced DNA damage. The Acai pulp doses selected were 3.33, 10.0 and 16.67 g/kg b.w. administered by gavage alone or prior to DXR (16 mg/kg b.w.) administered by intraperitoneal injection. Swiss albino mice were distributed in eight groups for acute treatment with acai pulp (24 h) and eight groups for subacute treatment (daily for 14 consecutive days) before euthanasia. The negative control groups were treated in a similar way. The results of chemical analysis suggested the presence of carotenoids, anthocyanins, phenolic. and flavonoids in Acai pulp. The endpoints analyzed were micronucleus induction in bone marrow and peripheral blood cells polychromatic erythrocytes, and DNA damage in peripheral blood, liver and kidney cells assessed using the alkaline (pH > 13) comet assay. There were no statistically significant differences (p > 0.05) between the negative control and the groups treated with the three doses of Acai pulp alone in all endpoints analyzed, demonstrating the absence of genotoxic effects. The protective effects of Acai pulp were observed in both acute and subacute treatments, when administered prior to DXR. In general, subacute treatment provided greater efficiency in protecting against DXR-induced DNA damage in liver and kidney cells. These protective effects can be explained as the result of the phytochemicals present in Acai pulp. These results will be applied to the developmental of food with functional characteristics, as well as to explore the characteristics of Acai as a health promoter. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amiodarone, a benzofuran derivative. is a very effective antiarrhythmic medication, but has potential to cause side effects. Although its cytotoxicity potential is very well-known, there are few reports about its genotoxicity effects. Since amiodarone has not been investigated in genotoxicity studies, and the spontaneously hypertensive rat (SHR) is a well-characterized model for hypertension, the aim of the present study was to perform cytogenetic analysis on chromosome aberrations in bone marrow cells of SHRs and normotensive Wistar-Kyoto rats (WKYs) that received oral amiodarone treatment for 4 weeks. Amiodarone activity was also monitored using electrocardiograms. The presence of bradycardia in amiodarone-treated rats confirmed that this drug was really active. Metaphase analysis on bone marrow cells showed that there were significant differences in total chromosomal damage and percentage abnormal metaphase between WKY and SHR negative controls. In the SHR negative control, the frequencies of basal chromosomal aberrations and abnormal metaphases were significantly higher (p < 0.05). There were high numbers of chromosomal aberrations in all amiodarone-treated groups, compared with negative controls. In amiodarone-treated groups, the most frequent chromosomal aberration was chromatid breaks. More chromosomal aberrations were found in WKYs that received amiodarone, with a statistically significant difference in comparison with negative controls (p < 0.05). However, in SHR rats there was no significant difference between the amiodarone and negative groups regarding chromosomal damage induction. These results showed that treatment with amiodarone was genotoxic in WKYs, but not in SHRs. Further studies are needed to confirm whether amiodarone is genotoxic or efficient and harmless, among humans undergoing therapy. (c) 2008 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reaction between formaldehyde and the pendant arm macrocyclic complex (trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine)cobalt(III) [CoL1](3+) yielded the diimine derivative trans-6,13-dimethyl-6.13-bis(methyleneamino)-1,4,8,11-tetraazacyclotetradecane (L-3) as its cobalt(III) complex. Reduction of the imines has been achieved with NaBH4 and the meso and rac cobalt(III) complexes of trans-6,13-dimethyl-6,13-bis(methylamino)-1,4,8,11-tetraazacyclotetradecane (L-5) have been prepared. Crystal structures of the macrocyclic complexes [CoL1][ClO4](3), [CoL3][ClO4](3) and meso-[CoL5][ClO4](3).2H(2)O were determined and some unusual structural, spectroscopic and electrochemical variations observed going from the parent hexaamine [CoL1](3+) to [CoL3](3+) (diimine) and ultimately to [CoL5](3+) (bis-N-methylated hexaamine).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1983, Jager and Kaul proved that the equator map u*(x) = (x/\x\,0) : B-n --> S-n is unstable for 3 less than or equal to n less than or equal to 6 and a minimizer for the energy functional E(u, B-n) = integral B-n \del u\(2) dx in the class H-1,H-2(B-n, S-n) with u = u* on partial derivative B-n when n greater than or equal to 7. In this paper, we give a new and elementary proof of this Jager-Kaul result. We also generalize the Jager-Kaul result to the case of p-harmonic maps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At a time of the emergence of drug-resistant bacterial strains, the development of antimicrobial compounds with novel mechanisms of action is of considerable interest. Perhaps the most promising among these is a family of antibacterial peptides originally isolated from insects. These were shown to act in a stereospecific manner on an as-yet unidentified target bacterial protein. One of these peptides, drosocin, is inactive in vivo due to the rapid decomposition in mammalian sera. However, another family member, pyrrhocoricin, is significantly more stable, has increased in vitro efficacy against Gram-negative bacterial strains, and if administered alone, as we show here, is devoid of in vitro or in vivo toxicity. At low doses, pyrrhocoricin protected mice against Escherichia call infection, but at a higher dose augmented the infection of compromised animals. Analogs of pyrrhocoricin were, therefore, synthesized to further improve protease resistance and reduce toxicity. A linear derivative containing unnatural amino acids at both termini showed high potency and lack of toxicity in vivo and an expanded cyclic analog displayed broad activity spectrum in vitro. The bioactive conformation of native pyrrhocoricin was determined by nuclear magnetic resonance spectroscopy, and similar to drosocin, reverse turns were identified as pharmacologically important elements at the termini, bridged by an extended peptide domain. Knowledge of the primary and secondary structural requirements for in vivo activity of these peptides allows the design of novel antibacterial drug leads.