818 resultados para distributed simulation pads anonymity tor simulator anonymous cloud computing
Resumo:
This paper is on a simulation for offshore wind systems in deep water under cloud scope. The system is equipped with a permanent magnet synchronous generator and a full-power three-level converter, converting the electric energy at variable frequency in one at constant frequency. The control strategies for the three-level are based on proportional integral controllers. The electric energy is injected through a HVDC transmission submarine cable into the grid. The drive train is modeled by a three-mass model taking into account the resistant stiffness torque, structure and tower in the deep water due to the moving surface elevation. Conclusions are taken on the influence of the moving surface on the energy conversion. © IFIP International Federation for Information Processing 2015.
Resumo:
Multi-agent approaches have been widely used to model complex systems of distributed nature with a large amount of interactions between the involved entities. Power systems are a reference case, mainly due to the increasing use of distributed energy sources, largely based on renewable sources, which have potentiated huge changes in the power systems’ sector. Dealing with such a large scale integration of intermittent generation sources led to the emergence of several new players, as well as the development of new paradigms, such as the microgrid concept, and the evolution of demand response programs, which potentiate the active participation of consumers. This paper presents a multi-agent based simulation platform which models a microgrid environment, considering several different types of simulated players. These players interact with real physical installations, creating a realistic simulation environment with results that can be observed directly in the reality. A case study is presented considering players’ responses to a demand response event, resulting in an intelligent increase of consumption in order to face the wind generation surplus.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Resilience is the property of a system to remain trustworthy despite changes. Changes of a different nature, whether due to failures of system components or varying operational conditions, significantly increase the complexity of system development. Therefore, advanced development technologies are required to build robust and flexible system architectures capable of adapting to such changes. Moreover, powerful quantitative techniques are needed to assess the impact of these changes on various system characteristics. Architectural flexibility is achieved by embedding into the system design the mechanisms for identifying changes and reacting on them. Hence a resilient system should have both advanced monitoring and error detection capabilities to recognise changes as well as sophisticated reconfiguration mechanisms to adapt to them. The aim of such reconfiguration is to ensure that the system stays operational, i.e., remains capable of achieving its goals. Design, verification and assessment of the system reconfiguration mechanisms is a challenging and error prone engineering task. In this thesis, we propose and validate a formal framework for development and assessment of resilient systems. Such a framework provides us with the means to specify and verify complex component interactions, model their cooperative behaviour in achieving system goals, and analyse the chosen reconfiguration strategies. Due to the variety of properties to be analysed, such a framework should have an integrated nature. To ensure the system functional correctness, it should rely on formal modelling and verification, while, to assess the impact of changes on such properties as performance and reliability, it should be combined with quantitative analysis. To ensure scalability of the proposed framework, we choose Event-B as the basis for reasoning about functional correctness. Event-B is a statebased formal approach that promotes the correct-by-construction development paradigm and formal verification by theorem proving. Event-B has a mature industrial-strength tool support { the Rodin platform. Proof-based verification as well as the reliance on abstraction and decomposition adopted in Event-B provides the designers with a powerful support for the development of complex systems. Moreover, the top-down system development by refinement allows the developers to explicitly express and verify critical system-level properties. Besides ensuring functional correctness, to achieve resilience we also need to analyse a number of non-functional characteristics, such as reliability and performance. Therefore, in this thesis we also demonstrate how formal development in Event-B can be combined with quantitative analysis. Namely, we experiment with integration of such techniques as probabilistic model checking in PRISM and discrete-event simulation in SimPy with formal development in Event-B. Such an integration allows us to assess how changes and di erent recon guration strategies a ect the overall system resilience. The approach proposed in this thesis is validated by a number of case studies from such areas as robotics, space, healthcare and cloud domain.
Resumo:
We investigated the effect of morphological differences on neuronal firing behavior within the hippocampal CA3 pyramidal cell family by using three-dimensional reconstructions of dendritic morphology in computational simulations of electrophysiology. In this paper, we report for the first time that differences in dendritic structure within the same morphological class can have a dramatic influence on the firing rate and firing mode (spiking versus bursting and type of bursting). Our method consisted of converting morphological measurements from three-dimensional neuroanatomical data of CA3 pyramidal cells into a computational simulator format. In the simulation, active channels were distributed evenly across the cells so that the electrophysiological differences observed in the neurons would only be due to morphological differences. We found that differences in the size of the dendritic tree of CA3 pyramidal cells had a significant qualitative and quantitative effect on the electrophysiological response. Cells with larger dendritic trees: (1) had a lower burst rate, but a higher spike rate within a burst, (2) had higher thresholds for transitions from quiescent to bursting and from bursting to regular spiking and (3) tended to burst with a plateau. Dendritic tree size alone did not account for all the differences in electrophysiological responses. Differences in apical branching, such as the distribution of branch points and terminations per branch order, appear to effect the duration of a burst. These results highlight the importance of considering the contribution of morphology in electrophysiological and simulation studies.
Resumo:
This paper discusses the development of the Virtual Construction Simulator (VCS) 3 - a simulation game-based educational tool for teaching construction schedule planning and management. The VCS3 simulation game engages students in learning the concepts of planning and managing construction schedules through goal driven exploration, employed strategies, and immediate feedback. Through the planning and simulation mode, students learn the difference between the as-planned and as-built schedules resulting from varying factors such as resource availability, weather and labor productivity. This paper focuses on the development of the VCS3 and its construction physics model. Challenges inherent in the process of identifying variables and their relationships to reliably represent and simulate the dynamic nature of planning and managing of construction projects are also addressed.
Resumo:
I consider the case for genuinely anonymous web searching. Big data seems to have it in for privacy. The story is well known, particularly since the dawn of the web. Vastly more personal information, monumental and quotidian, is gathered than in the pre-digital days. Once gathered it can be aggregated and analyzed to produce rich portraits, which in turn permit unnerving prediction of our future behavior. The new information can then be shared widely, limiting prospects and threatening autonomy. How should we respond? Following Nissenbaum (2011) and Brunton and Nissenbaum (2011 and 2013), I will argue that the proposed solutions—consent, anonymity as conventionally practiced, corporate best practices, and law—fail to protect us against routine surveillance of our online behavior. Brunton and Nissenbaum rightly maintain that, given the power imbalance between data holders and data subjects, obfuscation of one’s online activities is justified. Obfuscation works by generating “misleading, false, or ambiguous data with the intention of confusing an adversary or simply adding to the time or cost of separating good data from bad,” thus decreasing the value of the data collected (Brunton and Nissenbaum, 2011). The phenomenon is as old as the hills. Natural selection evidently blundered upon the tactic long ago. Take a savory butterfly whose markings mimic those of a toxic cousin. From the point of view of a would-be predator the data conveyed by the pattern is ambiguous. Is the bug lunch or potential last meal? In the light of the steep costs of a mistake, the savvy predator goes hungry. Online obfuscation works similarly, attempting for instance to disguise the surfer’s identity (Tor) or the nature of her queries (Howe and Nissenbaum 2009). Yet online obfuscation comes with significant social costs. First, it implies free riding. If I’ve installed an effective obfuscating program, I’m enjoying the benefits of an apparently free internet without paying the costs of surveillance, which are shifted entirely onto non-obfuscators. Second, it permits sketchy actors, from child pornographers to fraudsters, to operate with near impunity. Third, online merchants could plausibly claim that, when we shop online, surveillance is the price we pay for convenience. If we don’t like it, we should take our business to the local brick-and-mortar and pay with cash. Brunton and Nissenbaum have not fully addressed the last two costs. Nevertheless, I think the strict defender of online anonymity can meet these objections. Regarding the third, the future doesn’t bode well for offline shopping. Consider music and books. Intrepid shoppers can still find most of what they want in a book or record store. Soon, though, this will probably not be the case. And then there are those who, for perfectly good reasons, are sensitive about doing some of their shopping in person, perhaps because of their weight or sexual tastes. I argue that consumers should not have to pay the price of surveillance every time they want to buy that catchy new hit, that New York Times bestseller, or a sex toy.
Resumo:
A parallel technique, for a distributed memory machine, based on domain decomposition for solving the Navier-Stokes equations in cartesian and cylindrical coordinates in two dimensions with free surfaces is described. It is based on the code by Tome and McKee (J. Comp. Phys. 110 (1994) 171-186) and Tome (Ph.D. Thesis, University of Strathclyde, Glasgow, 1993) which in turn is based on the SMAC method by Amsden and Harlow (Report LA-4370, Los Alamos Scientific Laboratory, 1971), which solves the Navier-Stokes equations in three steps: the momentum and Poisson equations and particle movement, These equations are discretized by explicit and 5-point finite differences. The parallelization is performed by splitting the computation domain into vertical panels and assigning each of these panels to a processor. All the computation can then be performed using nearest neighbour communication. Test runs comparing the performance of the parallel with the serial code, and a discussion of the load balancing question are presented. PVM is used for communication between processes. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
This thesis is focused on Smart Grid applications in medium voltage distribution networks. For the development of new applications it appears useful the availability of simulation tools able to model dynamic behavior of both the power system and the communication network. Such a co-simulation environment would allow the assessment of the feasibility of using a given network technology to support communication-based Smart Grid control schemes on an existing segment of the electrical grid and to determine the range of control schemes that different communications technologies can support. For this reason, is presented a co-simulation platform that has been built by linking the Electromagnetic Transients Program Simulator (EMTP v3.0) with a Telecommunication Network Simulator (OPNET-Riverbed v18.0). The simulator is used to design and analyze a coordinate use of Distributed Energy Resources (DERs) for the voltage/var control (VVC) in distribution network. This thesis is focused control structure based on the use of phase measurement units (PMUs). In order to limit the required reinforcements of the communication infrastructures currently adopted by Distribution Network Operators (DNOs), the study is focused on leader-less MAS schemes that do not assign special coordinating rules to specific agents. Leader-less MAS are expected to produce more uniform communication traffic than centralized approaches that include a moderator agent. Moreover, leader-less MAS are expected to be less affected by limitations and constraint of some communication links. The developed co-simulator has allowed the definition of specific countermeasures against the limitations of the communication network, with particular reference to the latency and loss and information, for both the case of wired and wireless communication networks. Moreover, the co-simulation platform has bee also coupled with a mobility simulator in order to study specific countermeasures against the negative effects on the medium voltage/current distribution network caused by the concurrent connection of electric vehicles.
Resumo:
Cardiopulmonary resuscitation (CPR) during flight is challenging and has to be sustained for long periods. In this setting a mechanical-resuscitation-device (MRD) might improve performance. In this study we compared the quality of resuscitation of trained flight attendants practicing either standard basic life support (BLS) or using a MRD in a cabin-simulator.
Resumo:
We describe a system for performing SLA-driven management and orchestration of distributed infrastructures composed of services supporting mobile computing use cases. In particular, we focus on a Follow-Me Cloud scenario in which we consider mobile users accessing cloud-enable services. We combine a SLA-driven approach to infrastructure optimization, with forecast-based performance degradation preventive actions and pattern detection for supporting mobile cloud infrastructure management. We present our system's information model and architecture including the algorithmic support and the proposed scenarios for system evaluation.