988 resultados para direct writing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the transient thermal stress field in wall-shape metal part during laser direct forming, a FEM model basing on ANSYS is established, and its algorithm is also dealt with. Calculation results show that while the wall-shape metal part is being deposited, in X direction, the thermal stress in the top layer of the wall-shape metal part is tensile stress and in the inner of the wall-shape metal part is compressive stress. The reason causing above-mentioned thermal stress status in the wall-shape metal part is illustrated, and the influence of the time and the processing parameters on the thermal stress field in wall-shape metal part is also studied. The calculation results are consistent with experimental results in tendency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments of direct initiation of hydrogen-oxygen by means of a hot turbulent jet were made. Results indicate that the length of ignition tube is the dominant factor in determining the ignition capability of hot turbulent jet, and that the ignition capability of turbulence jet increases with the length of ignition tube. Because this ignition capability can meet the demands of a gas-detonation-driver shock tunnel and it doesn't require additional facilities, the hot turbulent jet initiation method can be applied to large hydrogen-oxygen detonation-driver shock tunnels. Influences of obstacles on the ignition capability were also studied. It was found that the presence of obstacles weakens the ignition capability of a hot turbulent jet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conventional direct simulation Monte Carlo (DSMC) method has a strong restriction on the cell size because simulated particles are selected randomly within the cell for collisions. Cells with size larger than the molecular mean free path are generally not allowed in correct DSMC simulations. However, the cell-size induced numerical error can be controlled if the gradients of flow properties are properly involved during collisions. In this study, a large cell DSMC scheme is proposed to relax the cell size restriction. The scheme is applied to simulate several test problems and promising results are obtained even when the cell size is greater than 10 mean free paths of gas molecules. However, it is still necessary, of course, that the cell size be small with respect to the flow field structures that must be resolved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Second National Workshop on Marine Mammal Research and Monitoring in the National Marine Sanctuaries was held on 28 November 1999 in Maui, Hawaii. The workshop preceded the Thirteenth Biennial Conference on the Biology of Marine Mammals, and provided an opportunity to review and promote marine mammal research and monitoring in the National Marine Sanctuaries (NMS). The purpose of the workshop was to bring together researchers and sanctuary staff and to improve marine mammal research and monitoring throughout the sanctuaries. Discussion topics included: potential multi-sanctuary projects, sources of funding for multi-sanctuary projects, services and equipment for researchers through the sanctuaries, consolidating small levels of funding, help in funding and support for writing up data, publishing documents in Technical Memoranda, and letters of support. Representatives from the NMS national office and nine sanctuaries provided participants with overviews of marine mammal research within the sanctuaries. Presentations were also given by representatives from the National Marine Fisheries Service’s Permits and Health and Stranding programs. During the breakout working groups, there were several comments and suggestions consistent among each of the groups to improve marine mammal research. Each group emphasized the need to improve communication among researchers and to better share data. These suggestions included web-based information networks, advisory panels, and workshops. Regionally based research projects were also emphasized. In order to best study marine mammal populations, collaborative studies must take place throughout multiple sanctuaries. In order to achieve these large scale studies, funding and staffing must be directed towards these studies and distributed among each of the sanctuaries so that they may all be able to have the staffing, equipment, and vessels necessary to achieve a collaborative, ecosystem-based, regional marine mammal monitoring program. It will take several years to achieve all of the suggestions from the workshop, but thanks to the workshop participants, the National Marine Sanctuary Program has begun to direct marine mammal research and monitoring in order to achieve the goals of the workshop. This document provides a summary of the workshop with a focus on key points/main issues. We have included contact information intended to encourage continued collaboration among the individuals and organizations represented at the 1999 Marine Mammal Research and Monitoring in the National Marine Sanctuaries Workshop. (PDF contains 71 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The direct simulation Monte Carlo (DSMC) method is a widely used approach for flow simulations having rarefied or nonequilibrium effects. It involves heavily to sample instantaneous values from prescribed distributions using random numbers. In this note, we briefly review the sampling techniques typically employed in the DSMC method and present two techniques to speedup related sampling processes. One technique is very efficient for sampling geometric locations of new particles and the other is useful for the Larsen-Borgnakke energy distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The direct numerical simulation of boundary layer transition over a 5° half-cone-angle blunt cone is performed. The free-stream Mach number is 6 and the angle of attack is 1°. Random wall blow-and-suction perturbations are used to trigger the transition. Different from the authors’ previous work [Li et al., AIAA J. 46, 2899(2008)], the whole boundary layer flow over the cone is simulated (while in the author’s previous work, only two 45° regions around the leeward and the windward sections are simulated). The transition location on the cone surface is determined through the rapid increase in skin fraction coefficient (Cf). The transition line on the cone surface shows a nonmonotonic curve and the transition is delayed in the range of 0° ≤ θ ≤ 30° (θ = 0° is the leeward section). The mechanism of the delayed transition is studied by using joint frequency spectrum analysis and linear stability theory (LST). It is shown that the growth rates of unstable waves of the second mode are suppressed in the range of 20° ≤ θ ≤ 30°, which leads to the delayed transition location. Very low frequency waves VLFWs� are found in the time series recorded just before the transition location, and the periodic times of VLFWs are about one order larger than those of ordinary Mack second mode waves. Band-pass filter is used to analyze the low frequency waves, and they are deemed as the effect of large scale nonlinear perturbations triggered by LST waves when they are strong enough.The direct numerical simulation of boundary layer transition over a 5° half-cone-angle blunt cone is performed. The free-stream Mach number is 6 and the angle of attack is 1°. Random wall blow-and-suction perturbations are used to trigger the transition. Different from the authors’ previous work [ Li et al., AIAA J. 46, 2899 (2008) ], the whole boundary layer flow over the cone is simulated (while in the author’s previous work, only two 45° regions around the leeward and the windward sections are simulated). The transition location on the cone surface is determined through the rapid increase in skin fraction coefficient (Cf). The transition line on the cone surface shows a nonmonotonic curve and the transition is delayed in the range of 20° ≤ θ ≤ 30° (θ = 0° is the leeward section). The mechanism of the delayed transition is studied by using joint frequency spectrum analysis and linear stability theory (LST). It is shown that the growth rates of unstable waves of the second mode are suppressed in the range of 20° ≤ θ ≤ 30°, which leads to the delayed transition location. Very low frequency waves (VLFWs) are found in the time series recorded just before the transition location, and the periodic times of VLFWs are about one order larger than those of ordinary Mack second mode waves. Band-pass filter is used to analyze the low frequency waves, and they are deemed as the effect of large scale nonlinear perturbations triggered by LST waves when they are strong enough.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An in-situ visualization of two-phase flow inside anode flow bed of a small liquid fed direct methanol fuel cells in normal and reduced gravity has been conducted in a drop tower. The anode flow bed consists of 11 parallel straight channels. The length, width and depth of single channel, which had rectangular cross section, are 48.0, 2.5 and 2.0 mm, respectively. The rib width was 2.0 mm. The experimental results indicated that when the fuel cell orientation is vertical, two-phase flow pattern in anode channels can evolve from bubbly flow in normal gravity into slug flow in microgravity. The size of bubbles in the reduced gravity is also bigger. In microgravity, the bubbles rising speed in vertical channels is obviously slower than that in normal gravity. When the fuel cell orientation is horizontal, the slug flow in the reduced gravity has almost the same characteristic with that in normal gravity. It implies that the effect of gravity on two-phase flow is small and the bubbles removal is governed by viscous drag. When the gas slugs or gas columns occupy channels, the performance of liquid fed direct methanol fuel cells is failing rapidly. It infers that in long-term microgravity, flow bed and operating condition should be optimized to avoid concentration polarization of fuel cells.