963 resultados para di(2-ethylhexyl)phosphoric acid
Resumo:
The identification of endogenously produced antigenic peptides presented by MHC class I molecules has opened the way to peptide-based strategies for CTL induction in vivo. Here we demonstrate that the induction in vivo of CTL directed against naturally processed antigens can be triggered by injection of syngeneic cells expressing covalent major histocompatibility complex class I-peptide complexes. In the model system used, the induction of HLA-Cw3 specific cytotoxic T lymphocytes (CTL) in mice by cell surface-associated, covalent H-2Kd (Kd)-Cw3 peptide complexes was investigated. The Kd-restricted Cw3 peptide 170-179 (RYLKNGKETL), which mimics the major natural epitope recognized by Cw3-specific CTL in H-2d mice, was converted to a photoreactive derivative by replacing Arg-170 with N-beta-(4-azidosalicyloyl)-L-2,3-diaminopropionic acid. This peptide derivative was equivalent to the parental Cw3 peptide in terms of binding to Kd molecules and recognition by Cw3-specific CTL clones and could be cross-linked efficiently and selectively to Kd molecules on the surface of Con A-stimulated spleen cells from H-2d mice. Photocross-linking prevented the rapid dissociation of Kd-peptide derivative complexes that takes place under physiological conditions. Cultures of spleen cells or peritoneal exudate cells from mice inoculated i.p. with peptide-pulsed and photocross-linked cells developed a strong CTL response following antigenic stimulation in vitro. The cultured cells efficiently lysed not only target cells sensitized with the Cw3 170-179 peptide but also target cells transfected with the Cw3 gene. Moreover, their TCR preferentially expressed V beta 10 and J alpha pHDS58 segments as well as conserved junctional sequences, as has been observed previously in Cw3-specific CTL responses. In contrast, no Cw3-specific CTL response could be obtained in cultures derived from mice injected with Con A-stimulated spleen cells pulsed with the peptide derivative without photocross-linking.
Erosão em sulcos e entressulcos em razão do formato de parcela em Argissolo Vermelho-Amarelo arênico
Resumo:
O objetivo deste trabalho foi avaliar o efeito de parcelas de erosão com seções transversais da superfície do solo retangular (STR) e triangular (STT) na perda de solo e água e na erodibilidade, em sulcos e entressulcos. O experimento foi conduzido em 1998, em um Argissolo Vermelho-Amarelo distrófico arênico, preparado convencionalmente. As dimensões das parcelas de entressulcos foram de 0,50 m por 0,75 m; nos sulcos com STR, as dimensões foram de 0,20 m por 5,90 m, e nos de STT, de 0,50 m por 5,90 m. Utilizou-se chuva simulada constante de 65 mm h-1 nos entressulcos, durante 90 minutos. Nos sulcos, após pré-umedecimento do solo, foram aplicadas cinco vazões extras crescentes de 0,0002 m³ s-1 até 0,0010 m³ s-1. A desagregação nos entressulcos Di (2,09.10-4 kg m-2 s-1 nas STR e 3,35.10-4 kg m-2 s-1 nas STT), a erodibilidade nos entressulcos Ki (1,77.10(6) kg s m-4 nas STR e 2,00.10(6) kg s m-4 nas STT), a erodibilidade em sulcos Kr (0,0110 kg N-1 s-1 nas STR e 0,0074 kg N-1 s-1 na STT) e a tensão crítica de cisalhamento tauc (2,61 N m-2 na STR e 2,00 N m-2 na STT) não foram estatisticamente diferentes nos dois formatos de seção transversal, e podem ser determinados usando-se qualquer um dos formatos de parcelas em solos de textura superficial arenosa.
Resumo:
Matrix sublimation has demonstrated to be a powerful approach for high-resolution matrix-assisted laser desorption ionization (MALDI) imaging of lipids, providing very homogeneous solvent-free deposition. This work presents a comprehensive study aiming to evaluate current and novel matrix candidates for high spatial resolution MALDI imaging mass spectrometry of lipids from tissue section after deposition by sublimation. For this purpose, 12 matrices including 2,5-dihydroxybenzoic acid (DHB), sinapinic acid (SA), α-cyano-4-hydroxycinnamic acid (CHCA), 2,6-dihydroxyacetphenone (DHA), 2',4',6'-trihydroxyacetophenone (THAP), 3-hydroxypicolinic acid (3-HPA), 1,8-bis(dimethylamino)naphthalene (DMAN), 1,8,9-anthracentriol (DIT), 1,5-diaminonapthalene (DAN), p-nitroaniline (NIT), 9-aminoacridine (9-AA), and 2-mercaptobenzothiazole (MBT) were investigated for lipid detection efficiency in both positive and negative ionization modes, matrix interferences, and stability under vacuum. For the most relevant matrices, ion maps of the different lipid species were obtained from tissue sections at high spatial resolution and the detected peaks were characterized by matrix-assisted laser desorption ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) mass spectrometry. First proposed for imaging mass spectrometry (IMS) after sublimation, DAN has demonstrated to be of high efficiency providing rich lipid signatures in both positive and negative polarities with high vacuum stability and sub-20 μm resolution capacity. Ion images from adult mouse brain were generated with a 10 μm scanning resolution. Furthermore, ion images from adult mouse brain and whole-body fish tissue sections were also acquired in both polarity modes from the same tissue section at 100 μm spatial resolution. Sublimation of DAN represents an interesting approach to improve information with respect to currently employed matrices providing a deeper analysis of the lipidome by IMS.
Resumo:
Tämän tutkimuksen tavoitteena oli selvittää e-hankinnan (sähköisen hankinnan) perusteet ja e-hankinnoissa kohdattavia esteitä. Tutkimuksen tarkoituksena oli myös selkeyttää kuvaa sähköisestä liiketoiminnasta ja julkisistae-hankinnoista yleensä. Tutkimuksen kohteena oli valtion yhteishankintayksikkö Hansel Oy:n hankintakanava Merkaattori ja sen epäonnistumisen syiden tutkiminen.Tutkimuksen teoriaosa perustui aikaisempiin tutkimuksiin, artikkeleihin ja kirjallisuuteen. Tulokseksi saatiin kokonaisvaltainen kuva niin sähköisestä liiketoiminnasta kuin e-hankinnoistakin. Teoriaan pohjautuvan kyselytutkimuksen tarkoituksena oli selvittää Hansel Oy:n hankintakanava Merkaattorin epäonnistumiseen johtaneita tekijöitä. Kysely lähetettiin Hanseliin sähköpostiviestinä ja se sisälsi13 aiheeseen liittyvää kysymystä. Kyselyn tuloksena voitiin päätellä, että Merkaattori kaatui aivan tavallisiin e-hankinnan esteisiin, esim. asiakkaiden tarpeita ei täytetty riittävästi. Jos nämä tutkimuksessa ilmenneet esteet olisi poistettu, Merkaattori olisi ollut menestys. Kaiken kaikkiaan tehdyn tutkimuksen perusteella voidaan todeta e-hankintojen saavan nopeasti jalansijaa liike-elämässä. Turhien epäonnistumisten välttämiseksi on tärkeätä tietää e-hankintoihin liittyvistä haasteista ja esteistä.
Resumo:
Haloesterification of diverse diols with various carboxylic acids was achieved using potassium halides (KX) as the only halide source in ionic liquids. The best yield was obtained in [BMIM][PF6] when 1,2-octanediol, palmitic acid and KBr were used. This yield was 85% and the regioisomer with the bromine in primary position was present in a 75:25 ratio. The regioisomeric ratio could be improved using either KCl or some phenylcarboxylic acids. [BMIM][PF6] acts as both reaction media and catalyst of the reaction. To the best of our knowledge, this type of combined reaction using an ionic liquid is unprecedented. The other solvents tested did not lead either to the same yield or to the same regioisomeric ratio.
Resumo:
Apatiittien käyttöä raaka-aineena lannoitteiden valmistusprosessissa on usein hankaloittanut lannoitelietteen viskositeetin kasvu, kun hapanta lannoitelietettä on neutraloitu ammoniakilla. Työn tarkoituksena oli tutkia lannoitelietteen viskositeettiin vaikuttavia tekijöitä ja tekijöiden vaikutusta lannoitteen ominaisuuksiin. Työn kirjallisen osan alkupuoliskolla käsiteltiin raakafosfaatteja ja fosfaattilannoitteita. Tämän jälkeen keskityttiin lannoitteiden valmistukseen sekä viskositeetin merkitykseen lannoiteprosesseissa. Työn kokeellisessa osassa tutkittiin raakafosfaatin, liuotushapon, liuotushappomäärän, ammonointiajan sekä apatiitti/fosforihappo-suhteen vaikutusta lannoitteen ominaisuuksiin. Kokeet aloitettiin raakafosfaatin liuotuksella happoon. Tämän jälkeen liete neutraloitiin ammoniakilla ja suoritettiin muiden ravinteiden lisäys. Lannoitelietteen viskositeettiin voimakkaimmin vaikuttavat tekijät olivat kokeissa käytetty liuotushappo, ammonointiaika sekä raakafosfaatti. Raakafosfaatilla, liuotushapolla sekä apatiitti/fosforihappo-suhteella havaittiin olevan suurin merkitys lannoitteen fosforin vesiliukoisuudelle.
Resumo:
We present a new binuclear complex, Fe2III(BBPMP)(OH)(O2 P(OPh)2) ClO4.CH3OH, 3, where BBPMP is the anion of 2,6-bis(2-hydroxybenzyl)(2-pyridylmethyl) aminomethyl-4-methylphenol, as a suitable model for the chromophoric site of purple acid phosphatases coordinated to phosphate. The complex was obtained by the reaction of complex 2, Fe2III(BBPMP)(O2P(OPh) 2)2 ClO4.H2O, in CH3CN with one equivalent of triethylamine. Based on the chromophoric properties of the model complex, lmax = 560 nm/ e = 4480 M-1 cm-1/Fe2 compared to the enzyme coordinated to phosphate, we can speculate about a possible mechanism of fixing this oxyanion by the oxidized form of the enzymes.
Resumo:
Marine microorganisms, including Aeromonas, are a source of compounds for drug development that have generated great expectations in the last decades. Aeromonas infections produce septicaemia, and ulcerative and haemorrhagic diseases in fish. Among the pathogenic factors associated with Aeromonas, the lipopolysaccharides (LPS), a surface glyconconjugate unique to Gram-negative bacteria consisting of lipid A (lipid anchor of the molecule), core oligosaccharide and O-specific polysaccharide (O antigen), are key elicitors of innate immune responses. The chemical structure of these three parts has been characterized in Aeromonas. Based on the high variability of repeated units of O-polysaccharides, a total of 97 O-serogroups have been described in Aeromonas species, of which four of them (O:11; O:16; O:18 and O:34) account for more than 60% of the septicemia cases. The core of LPS is subdivided into two regions, the inner (highly conserved) and the outer core. The inner core of Aeromonas LPS is characterized by the presence of 3-deoxy-D-manno-oct-2-ulosonic (ketodeoxyoctonic) acid (Kdo) and L-glycero-D-manno-Heptoses (L,D-Hep), which are linked to the outer core, characterized by the presence of Glc, GlcN, Gal, and GalNAc (in Aeromonas salmonicida), D,D-Hep (in Aeromonas salmonicida), and L,D-Hep (in Aeromonas hydrophila). The biological relevance of these differences in the distal part of the outer core among these species has not been fully assessed to date. The inner core is attached to the lipid A, a highly conserved structure that confers endotoxic properties to the LPS when the molecule is released in blood from lysed bacteria, thus inducing a major systemic inflammatory response known as septic or endotoxic shock. In Aeromonas salmonicida subsp. salmonicida the Lipid A components contain three major lipid A molecules, differing in acylation patterns corresponding to tetra-, penta- and hexaacylated lipid A species and comprising of 4′-monophosphorylated β-2-amino-2-deoxy-D-glucopyranose-(1→6)-2-amino-2-deoxy-D-glucopyranose disaccharide. In the present review, we discuss the structure-activity relationships of Aeromonas LPS, focusing on its role in bacterial pathogenesis and its possible applications.
Resumo:
The phase diagram formation of microemulsion-based gels composed of an anionic surfactant aerosol-OT sodium bis (2-ethylhexyl)-sulphosuccinate), water, gelatin and an organic solvent is presented for heptane. The stability of this organo- gel, when an enzyme is immobilized is discussed in terms of its reutilization in various esters synthesis.
Resumo:
The present work proposes the application of the 4-Hidroxy-3-(2-hydroxynaphtylazo)-benzenesulphonic acid (C.I. 15670), Alizarine Violet N (AVN), as a reagent for direct aluminium determination using molecular absorption spectrophotometry in the presence of tensoatives. Al(III) cation reacts with AVN in pH 9.4, forming a red complex, stable for at least 24 hours, with absorption minimum at 607nm and, against a reagent blank, (epsiloncomplex - epsilonreagent) = -2.71x10(4) L.mol-1.cm-1. The reaction occurs in the presence of a Triton-X100 and CTAB tensoatives mixture, in the presence of EDTA. Al(III) determination is possible in the linear range of 50 up to 400ng.mL-1, with a detection limit of 41 ng.mL-1.
Resumo:
The fuel cell principle was discovered by Sir Grove 150 years ago. However material problems prohibited its commercialization for a long time. A change has been occurring during the last 30 years, so two types of fuel cell technologies can be distinguished: low and high temperature operation cells. Nowadays, only phosphoric acid cells are commercially offered as 200 kWel power plants. Membrane cells are more suitable for automobile electrotraction with a very low (or no) environmental impact. The fuel continues, however, to play a very particular role, since hydrogen is not easy to store and to transport. The more promising target is the utilization of liquid methanol. The Brazilian scenario concerning this kind of technology is discussed.
Resumo:
Marine microorganisms, including Aeromonas, are a source of compds. for drug development that have generated great expectations in the last decades. Aeromonas infections produce septicemia, and ulcerative and haemorrhagic diseases in fish. Among the pathogenic factors assocd. with Aeromonas, the lipopolysaccharides (LPS), a surface glyconconjugate unique to Gram-neg. bacteria consisting of lipid A (lipid anchor of the mol.), core oligosaccharide and O-specific polysaccharide (O antigen), are key elicitors of innate immune responses. The chem. structure of these three parts has been characterized in Aeromonas. Based on the high variability of repeated units of O-polysaccharides, a total of 97 O-serogroups have been described in Aeromonas species, of which four of them (O:11; O:16; O:18 and O:34) account for more than 60% of the septicemia cases. The core of LPS is subdivided into two regions, the inner (highly conserved) and the outer core. The inner core of Aeromonas LPS is characterized by the presence of 3-deoxy-d-manno-oct-2-ulosonic (ketodeoxyoctonic) acid (Kdo) and l-glycero-d-manno-Heptoses (l,d-Hep), which are linked to the outer core, characterized by the presence of Glc, GlcN, Gal, and GalNAc (in Aeromonas salmonicida), d,d-Hep (in Aeromonas salmonicida), and l,d-Hep (in Aeromonas hydrophila). The biol. relevance of these differences in the distal part of the outer core among these species has not been fully assessed to date. The inner core is attached to the lipid A, a highly conserved structure that confers endotoxic properties to the LPS when the mol. is released in blood from lysed bacteria, thus inducing a major systemic inflammatory response known as septic or endotoxic shock. In Aeromonas salmonicida subsp. salmonicida the Lipid A components contain three major lipid A mols., differing in acylation patterns corresponding to tetra-, penta- and hexa-acylated lipid A species and comprising of 4'-monophosphorylated β-2-amino-2-deoxy-d-glucopyranose-(1→6)-2-amino-2-deoxy-d-glucopyranose disaccharide. In the present review, we discuss the structure-activity relationships of Aeromonas LPS, focusing on its role in bacterial pathogenesis and its possible applications.
Resumo:
Marine microorganisms, including Aeromonas, are a source of compds. for drug development that have generated great expectations in the last decades. Aeromonas infections produce septicemia, and ulcerative and haemorrhagic diseases in fish. Among the pathogenic factors assocd. with Aeromonas, the lipopolysaccharides (LPS), a surface glyconconjugate unique to Gram-neg. bacteria consisting of lipid A (lipid anchor of the mol.), core oligosaccharide and O-specific polysaccharide (O antigen), are key elicitors of innate immune responses. The chem. structure of these three parts has been characterized in Aeromonas. Based on the high variability of repeated units of O-polysaccharides, a total of 97 O-serogroups have been described in Aeromonas species, of which four of them (O:11; O:16; O:18 and O:34) account for more than 60% of the septicemia cases. The core of LPS is subdivided into two regions, the inner (highly conserved) and the outer core. The inner core of Aeromonas LPS is characterized by the presence of 3-deoxy-d-manno-oct-2-ulosonic (ketodeoxyoctonic) acid (Kdo) and l-glycero-d-manno-Heptoses (l,d-Hep), which are linked to the outer core, characterized by the presence of Glc, GlcN, Gal, and GalNAc (in Aeromonas salmonicida), d,d-Hep (in Aeromonas salmonicida), and l,d-Hep (in Aeromonas hydrophila). The biol. relevance of these differences in the distal part of the outer core among these species has not been fully assessed to date. The inner core is attached to the lipid A, a highly conserved structure that confers endotoxic properties to the LPS when the mol. is released in blood from lysed bacteria, thus inducing a major systemic inflammatory response known as septic or endotoxic shock. In Aeromonas salmonicida subsp. salmonicida the Lipid A components contain three major lipid A mols., differing in acylation patterns corresponding to tetra-, penta- and hexa-acylated lipid A species and comprising of 4'-monophosphorylated β-2-amino-2-deoxy-d-glucopyranose-(1→6)-2-amino-2-deoxy-d-glucopyranose disaccharide. In the present review, we discuss the structure-activity relationships of Aeromonas LPS, focusing on its role in bacterial pathogenesis and its possible applications.
Resumo:
Fine powders of minerals are used commonly in the paper and paint industry, and for ceramics. Research for utilizing of different waste materials in these applications is environmentally important. In this work, the ultrafine grinding of two waste gypsum materials, namely FGD (Flue Gas Desulphurisation) gypsum and phosphogypsum from a phosphoric acid plant, with the attrition bead mill and with the jet mill has been studied. The ' objective of this research was to test the suitability of the attrition bead mill and of the jet mill to produce gypsum powders with a particle size of a few microns. The grinding conditions were optimised by studying the influences of different operational grinding parameters on the grinding rate and on the energy consumption of the process in order to achieve a product fineness such as that required in the paper industry with as low energy consumption as possible. Based on experimental results, the most influential parameters in the attrition grinding were found to be the bead size, the stirrer type, and the stirring speed. The best conditions, based on the product fineness and specific energy consumption of grinding, for the attrition grinding process is to grind the material with small grinding beads and a high rotational speed of the stirrer. Also, by using some suitable grinding additive, a finer product is achieved with a lower energy consumption. In jet mill grinding the most influential parameters were the feed rate, the volumetric flow rate of the grinding air, and the height of the internal classification tube. The optimised condition for the jet is to grind with a small feed rate and with a large rate of volumetric flow rate of grinding air when the inside tube is low. The finer product with a larger rate of production was achieved with the attrition bead mill than with the jet mill, thus the attrition grinding is better for the ultrafine grinding of gypsum than the jet grinding. Finally the suitability of the population balance model for simulation of grinding processes has been studied with different S , B , and C functions. A new S function for the modelling of an attrition mill and a new C function for the modelling of a jet mill were developed. The suitability of the selected models with the developed grinding functions was tested by curve fitting the particle size distributions of the grinding products and then comparing the fitted size distributions to the measured particle sizes. According to the simulation results, the models are suitable for the estimation and simulation of the studied grinding processes.
Resumo:
Sialic acids are nine-carbon carbohydrates that occur widely in nature and occupy the terminal portions of some glycoproteins and glycolipids of cell membranes. These carbohydrates are closely involved in cell-cell interactions and in processes such as microbial infection, inflammation, etc. Studies on the participation of sialic acids in biological processes have provided comprehension about their role in the infection by the influenza virus, the causal agent of flu. In this article, we present an overview of the importance of sialic acids in the influenza virus infection and how the knowledge of their involvement in this process has allowed the development of selective and efficient drugs against the virus.