801 resultados para design systems
Resumo:
In our recent paper by Monnin et al. [Med. Phys. 33, 411-420 (2006)], an objective analysis of the relative performance of a computed radiography (CR) system using both standard single-side (ST-VI) and prototype dual-side read (ST-BD) plates was reported. The presampled modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) for the systems were determined at three different beam qualities representative of paediatric chest radiography, at an entrance detector air kerma of 5 microGy. Experiments demonstrated that, compared to the standard single-side read system, the MTF for the dual-side read system was slightly reduced, but a significant decrease in image noise resulted in a marked increase in DQE (+40%) in the low spatial frequency range. However, the DQE improvement for the ST-BD plate decreased with increasing spatial frequency, and, at spatial frequencies above 2.2 mm(-1), the DQE of the dual-side read system was lower than that of the single-side one.
Resumo:
The use of cover crops in vineyards is a conservation practice with the purpose of reducing soil erosion and improving the soil physical quality. The objective of this study was to evaluate cover crop species and management systems on soil physical properties and grape yield. The experiment was carried out in Bento Gonçalves, RS, Southern Brazil, on a Haplic Cambisol, in a vineyard established in 1989, using White and Rose Niagara grape (Vitis labrusca L.) in a horizontal, overhead trellis system. The treatments were established in 2002, consisting of three cover crops: spontaneous species (SS), black oat (Avena strigosa Schreb) (BO), and a mixture of white clover (Trifolium repens L.), red clover (Trifolium pratense L.) and annual rye-grass (Lolium multiflorum L.) (MC). Two management systems were applied: desiccation with herbicide (D) and mechanical mowing (M). Soil under a native forest (NF) area was collected as a reference. The experimental design consisted of completely randomized blocks, with three replications. The soil physical properties in the vine rows were not influenced by cover crops and were similar to the native forest, with good quality of the soil structure. In the inter-rows, however, there was a reduction in biopores, macroporosity, total porosity and an increase in soil density, related to the compaction of the surface soil layer. The M system increased soil aggregate stability compared to the D system. The treatments affected grapevine yield only in years with excess or irregular rainfall.
Resumo:
Tillage systems are a key element of the technology of crop production, both with a view to crop yield and from the perspective of soil conservation and sustainability of the production system. The aim of this paper was to evaluate the effects of five tillage systems on the physical properties of a cohesive Yellow Argisol. The experiment was installed in the field on January 21, 2011 and lasted 260 days, in an area previously used as pasture with Brachiaria grass without liming or fertilization, but irrigated by a low pressure spray system. The treatments, in five replications and in a randomized block design, consisted of: 1) disk plow (twice) + disk harrow + ridge-furrow tillage (raising a ridge along the planting row), 135 days after transplanting (DP + RID); 2) disk plow (twice) + disk harrow (DP no RID); 3) subsoiler (SB); 4) disk plow (twice) + disk harrow + scarification with three shanks along the plant row (DP + SPR); and 5) disk plow (twice) + disk harrow + scarification with three shanks in the total area (DP + STA). In all tillage systems, furrows were mechanically opened for the papaya plants. After the treatments, the mechanical resistance to penetration was determined, followed by soil moisture, mean weight diameter (MWD), geometric mean diameter (GMD), bulk density (BD), macroporosity (Ma), microporosity (Mi), and number of fruits per plant. There were differences in penetration resistance (PR) between treatments. The subsoiler was more effective to decrease RP to a distance of 0.35 m from the plants, perpendicular to the plant row. The scarifier resulted in a lower PR than DP or SB, even at the depth of 0.40 m, and it was more effective at greater distances perpendicular to the plant. All tillage systems induced a PR between 2.0 and 3.0 MPa at the depth with the highest concentration of papaya tree roots (0-0.25 m), improving the physical conditions to this depth. There was no statistical difference among the treatments for BD, Ma, Mi, MWD, and GMD at a depth of 0.20 m. The disk plow changed the physical properties of the soil most intensely to a depth of 0.20 m. The use of scarification, reduced tillage with a forest subsoiler, or ridge-furrow tillage did not improve the physical properties in the rhizosphere. Reduced tillage with a forest subsoiler resulted in a lower number of fruits per plant than all other treatments, which did not differ from each other.
Resumo:
Management systems may lead to a loss of soil physical quality as a result of removal of the plant cover and excessive agricultural mechanization. The hypothesis of this study was that the soil aggregate stability, bulk density, macro- and microporosity, and the S index and saturated hydraulic conductivity may be used as indicators of the soil physical quality. The aim was to study the effects of different periods and managements on the physical attributes of a medium-textured Red Oxisol under soybean and corn for two growing seasons, and determine which layers are most susceptible to variations. A completely randomized experimental design was used with split plots (five treatments and four layers), with four replications. The treatments in 2008/09 consisted of: five years of no-tillage (NTS5), seven years of no-tillage (NTS7), nine years of no-tillage (NTS9), conventional tillage (CTS) and an adjacent area of native forest (NF). The treatments were extended for another year, identified in 2009/10 as: NTS6, NTS8, NTS10, CTS and NF. The soil layers 0-0.05, 0.05-0.10, 0.10-0.20 and 0.20-0.30 m were sampled. The highest S index values were observed in the treatment CTS in the 0-0.05 m layer (0.106) and the 0.05-0.10 m layer (0.099) in 2008/09, and in the 0-0.05 m layer (0.066) in 2009/10. This fact may be associated with soil turnover, resulting in high macroporosity in this treatment. In contrast, in the NTS, limiting macroporosity values were observed in some layers (below 0.10 m³ m-3). Highest aggregate stability as well as the highest saturated hydraulic conductivity (Kθ) values were observed in NF in relation to the other treatments. In 2009/10, the Kθ in NF differed only from NTS10. This study showed that the use of the S index alone cannot be recommended as an absolute indicator of the soil physical quality, even at values greater than 0.035.
Resumo:
Vegetable production in conservation tillage has increased in Brazil, with positive effects on the soil quality. Since management systems alter the quantity and quality of organic matter, this study evaluated the influence of different management systems and cover crops on the organic matter dynamics of a dystrophic Red Latosol under vegetables. The treatments consisted of the combination of three soil tillage systems: no-tillage (NT), reduced tillage (RT) and conventional tillage (CT) and of two cover crops: maize monoculture and maize-mucuna intercrop. Vegetables were grown in the winter and the cover crops in the summer for straw production. The experiment was arranged in a randomized block design with four replications. Soil samples were collected between the crop rows in three layers (0.0-0.05, 0.05-0.10, and 0.10-0.30 m) twice: in October, before planting cover crops for straw, and in July, during vegetable cultivation. The total organic carbon (TOC), microbial biomass carbon (MBC), oxidizable fractions, and the carbon fractions fulvic acid (C FA), humic acid (C HA) and humin (C HUM) were determined. The main changes in these properties occurred in the upper layers (0.0-0.05 and 0.05-0.10 m) where, in general, TOC levels were highest in NT with maize straw. The MBC levels were lowest in CT systems, indicating sensitivity to soil disturbance. Under mucuna, the levels of C HA were lower in RT than NT systems, while the C FA levels were lower in RT than CT. For vegetable production, the C HUM values were lowest in the 0.05-0.10 m layer under CT. With regard to the oxidizable fractions, the tillage systems differed only in the most labile C fractions, with higher levels in NT than CT in the 0.0-0.05 m layer in both summer and winter, with no differences between these systems in the other layers. The cabbage yield was not influenced by the soil management system, but benefited from the mulch production of the preceding maize-mucuna intercrop as cover plant.
Resumo:
The no-till system with complex cropping sequences may improve the structural quality and carbon (C) sequestration in soils of the tropics. Thus, the objective of this study was to evaluate the effects of cropping sequences after eight years under the no-till system on the physical properties and C sequestration in an Oxisol in the municipality of Jaboticabal, Sao Paulo, Brazil. A randomized split-block design with three replications was used. The treatments were combinations of three summer cropping sequences - corn/corn (Zea mays L.) (CC), soybean/soybean (Glycine max L. Merryll) (SS), and soybean-corn (SC); and seven winter crops - corn, sunflower (Helianthus annuus L.), oilseed radish (Raphanus sativus L.), pearl millet (Pennisetum americanum (L.) Leeke), pigeon pea (Cajanus cajan (L.) Millsp), grain sorghum (Sorghum bicolor (L.) Moench), and sunn hemp (Crotalaria juncea L.). Soil samples were taken at the 0-10 cm depth after eight years of experimentation. Soil under SC and CC had higher mean weight diameter (3.63 and 3.55 mm, respectively) and geometric mean diameter (3.55 and 2.92 mm) of the aggregates compared to soil under SS (3.18 and 2.46 mm). The CC resulted in the highest soil organic C content (17.07 g kg-1), soil C stock (15.70 Mg ha-1), and rate of C sequestration (0.70 Mg ha-1 yr-1) among the summer crops. Among the winter crops, soil under pigeon pea had the highest total porosity (0.50 m³ m-3), and that under sunn hemp had the highest water stable aggregates (93.74 %). In addition, sunn hemp did not differ from grain sorghum and contained the highest soil organic C content (16.82 g kg-1) and also had the highest rate of C sequestration (0.67 Mg ha-1 yr-1). The soil resistance to penetration was the lower limit of the least limiting water range, while the upper limit was air-filled porosity for soil bulk densities higher than 1.39 kg dm-3 for all cropping sequences. Within the SC sequence, soil under corn and pigeon pea increased least limiting water range by formation of biopores because soil resistance to penetration decreased with the increase in soil bulk density.
Resumo:
The design of appropriate multifractal analysis algorithms, able to correctly characterize the scaling properties of multifractal systems from experimental, discretized data, is a major challenge in the study of such scale invariant systems. In the recent years, a growing interest for the application of the microcanonical formalism has taken place, as it allows a precise localization of the fractal components as well as a statistical characterization of the system. In this paper, we deal with the specific problems arising when systems that are strictly monofractal are analyzed using some standard microcanonical multifractal methods. We discuss the adaptations of these methods needed to give an appropriate treatment of monofractal systems.
Resumo:
Quantitative information from magnetic resonance imaging (MRI) may substantiate clinical findings and provide additional insight into the mechanism of clinical interventions in therapeutic stroke trials. The PERFORM study is exploring the efficacy of terutroban versus aspirin for secondary prevention in patients with a history of ischemic stroke. We report on the design of an exploratory longitudinal MRI follow-up study that was performed in a subgroup of the PERFORM trial. An international multi-centre longitudinal follow-up MRI study was designed for different MR systems employing safety and efficacy readouts: new T2 lesions, new DWI lesions, whole brain volume change, hippocampal volume change, changes in tissue microstructure as depicted by mean diffusivity and fractional anisotropy, vessel patency on MR angiography, and the presence of and development of new microbleeds. A total of 1,056 patients (men and women ≥ 55 years) were included. The data analysis included 3D reformation, image registration of different contrasts, tissue segmentation, and automated lesion detection. This large international multi-centre study demonstrates how new MRI readouts can be used to provide key information on the evolution of cerebral tissue lesions and within the macrovasculature after atherothrombotic stroke in a large sample of patients.
Resumo:
The strategic plan for bridge engineering issued by AASHTO in 2005 identified extending the service life and optimizing structural systems of bridges in the United States as two grand challenges in bridge engineering, with the objective of producing safer bridges that have a minimum service life of 75 years and reduced maintenance cost. Material deterioration was identified as one of the primary challenges to achieving the objective of extended life. In substructural applications (e.g., deep foundations), construction materials such as timber, steel, and concrete are subjected to deterioration due to environmental impacts. Using innovative and new materials for foundation applications makes the AASHTO objective of 75 years service life achievable. Ultra High Performance Concrete (UHPC) with compressive strength of 180 MPa (26,000 psi) and excellent durability has been used in superstructure applications but not in geotechnical and foundation applications. This study explores the use of precast, prestressed UHPC piles in future foundations of bridges and other structures. An H-shaped UHPC section, which is 10-in. (250-mm) deep with weight similar to that of an HP10×57 steel pile, was designed to improve constructability and reduce cost. In this project, instrumented UHPC piles were cast and laboratory and field tests were conducted. Laboratory tests were used to verify the moment-curvature response of UHPC pile section. In the field, two UHPC piles have been successfully driven in glacial till clay soil and load tested under vertical and lateral loads. This report provides a complete set of results for the field investigation conducted on UHPC H-shaped piles. Test results, durability, drivability, and other material advantages over normal concrete and steel indicate that UHPC piles are a viable alternative to achieve the goals of AASHTO strategic plan.
Resumo:
Any transportation infrastructure system is inherently concerned with durability and performance issues. The proportioning and uniformity control of concrete mixtures are critical factors that directly affect the longevity and performance of the portland cement concrete pavement systems. At present, the only means available to monitor mix proportions of any given batch are to track batch tickets created at the batch plant. However, this does not take into account potential errors in loading materials into storage silos, calibration errors, and addition of water after dispatch. Therefore, there is a need for a rapid, cost-effective, and reliable field test that estimates the proportions of as-delivered concrete mixtures. In addition, performance based specifications will be more easily implemented if there is a way to readily demonstrate whether any given batch is similar to the proportions already accepted based on laboratory performance testing. The goal of the present research project is to investigate the potential use of a portable x-ray fluorescence (XRF) technique to assess the proportions of concrete mixtures as they are delivered. Tests were conducted on the raw materials, paste and mortar samples using a portable XRF device. There is a reasonable correlation between the actual and calculated mix proportions of the paste samples, but data on mortar samples was less reliable.
Resumo:
Since 1978 the concept of longitudinal edge drains along Iowa primary and Interstate highways has been accepted as a cost-effective way of prolonging pavement life. Edge-drain installations have increased over the years, reaching a total of nearly 3,000 mi by 1989. With so many miles of edge drain installed, the development of a system for inspection and evaluation of the drains became essential. Equipment was purchased to evaluate 4-in.-diameter and geocomposite edge drains. Initial evaluations at various sites supported the need for a postconstruction inspection program to ensure that edge-drain installations were in accord with plans and specifications. Information disclosed by video inspections in edge drains and in culverts was compiled on videotape to be used as an informative tool for personnel in the design, construction, and maintenance departments. Video evaluations have influenced changes in maintenance, design, and construction inspection for highway drainage systems in Iowa.
Resumo:
The need for upgrading a large number of understrength bridges in the United States has been well documented in the literature. This manual presents two methods for strengthening continuous-span composite bridges: post-tensioning of the positive moment regions of the bridge stringers and the addition of superimposed trusses at the piers. The use of these two systems is an efficient method of reducing flexural overstresses in undercapacity bridges. Before strengthening a given bridge however, other deficiencies (inadequate shear connection, fatigue problems, extensive corrosion) should be addressed. Since continuous-span composite bridges are indeterminant structures, there is longitudinal and transverse distribution of the strengthening axial forces and moments. This manual basically provides the engineer with a procedure for determining the distribution of strengthening forces and moments throughout the bridge. As a result of the longitudinal and transverse force distribution, the design methodology presented in this manual for continuous-span composite bridges is extremely complex. To simplify the procedure, a spreadsheet has been developed for use by practicing engineers. This design aid greatly simplifies the design of a strengthening system for a given bridge in that it eliminates numerous tedious hand calculations, computes the required force and moment fractions, and performs the necessary iterations for determining the required strengthening forces. The force and moment distribution fraction formulas developed in this manual are primarily for the Iowa DOT V12 and V14 three-span four-stringer bridges. These formulas may be used on other bridges if they are within the limits stated in this manual. Use of the distribution fraction formulas for bridges not within the stated limits is not recommended.
Resumo:
This project was proposed as Phase I of a 2-phase program to evaluate the present use of weather information by Iowa Department of Transportation (IaDOT) personnel, recommend revised procedures, and then implement the resulting recommendations. Midway through Phase I (evaluation phase) the FORETELL project was funded. This project is a multi-state venture that engages the National Weather Service (NWS) and the Forecast Systems Laboratory of the National Oceanic and Atmospheric Administration and proposes to supplant the current weather information-generation and distribution system with an advanced system based on state-of-the-art technologies. The focus of the present project was therefore refined to consider use of weather data by IaDOT personnel, and the training programs needed to more effectively use these data. Results of the survey revealed that two major areas - training of personnel on use of data from whatever source and more precise information of frost formation - are not addressed in the FORETELL project. These aspects have been the focus of the present project.
Resumo:
Numerous drug delivery systems (DDSs) can be used as intraocular tools to provide a sustained and calibrated release for a specific drug. Great progress has been made on the design, biocompatibility, bioavailability, and efficacy of DDSs. Although several of them are undergoing clinical trials, a few are already on the market and could be of a routine use in clinical practice. Moreover, miniaturization of the implants makes them less and less traumatic for the eye tissues and some DDSs are now able to target certain cells or tissues specifically. An overview of ocular implants with therapeutic application potentials is provided.
Resumo:
Mixture proportioning is routinely a matter of using a recipe based on a previously produced concrete, rather than adjusting the proportions based on the needs of the mixture and the locally available materials. As budgets grow tighter and increasing attention is being paid to sustainability metrics, greater attention is beginning to be focused on making mixtures that are more efficient in their usage of materials yet do not compromise engineering performance. Therefore, a performance-based mixture proportioning method is needed to provide the desired concrete properties for a given project specification. The proposed method should be user friendly, easy to apply in practice, and flexible in terms of allowing a wide range of material selection. The objective of this study is to further develop an innovative performance-based mixture proportioning method by analyzing the relationships between the selected mix characteristics and their corresponding effects on tested properties. The proposed method will provide step-by-step instructions to guide the selection of required aggregate and paste systems based on the performance requirements. Although the provided guidance in this report is primarily for concrete pavements, the same approach can be applied to other concrete applications as well.