961 resultados para density-dependent space use


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the most important measures to prevent wild forest fires is the use of prescribed and controlled burning actions in order to reduce the availability of fuel mass. However, the impact of these activities on soil physical and chemical properties varies according to the type of both soil and vegetation and is not fully understood. Therefore, soil monitoring campaigns are often used to measure these impacts. In this paper we have successfully used three statistical data treatments - the Kolmogorov-Smirnov test followed by the ANOVA and the Kruskall-Wallis tests – to investigate the variability among the soil pH, soil moisture, soil organic matter and soil iron variables for different monitoring times and sampling procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study three techniques for obtaining outer membrane enriched fractions from Yersinia pestis were evaluated. The techniques analysed were: differential solubilization of the cytoplasmic membrane with Sarkosyl or Triton X-100, and centrifugation in sucrose density gradients. The sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of outer membrane isolated by the different methods resulted in similar protein patterns. The measurement of NADH-dehydrogenase and succinate dehydrogenase (inner membrane enzymes) indicated that the outer membrane preparations obtained by the three methods were pure enough for analytical studies. In addition, preliminary evidences on the potential use of outer membrane proteins for the identification of geographic variants of Y. pestis wild isolates are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do grau de Doutor em Bioquímica,especialidade Bioquímica-Física, pela Universidade Nova de Lisboa, Faculdade de Cincias e Tecnologia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Física - Física Aplicada pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrocardiogram (ECG) biometrics are a relatively recent trend in biometric recognition, with at least 13 years of development in peer-reviewed literature. Most of the proposed biometric techniques perform classifi-cation on features extracted from either heartbeats or from ECG based transformed signals. The best representation is yet to be decided. This paper studies an alternative representation, a dissimilarity space, based on the pairwise dissimilarity between templates and subjects' signals. Additionally, this representation can make use of ECG signals sourced from multiple leads. Configurations of three leads will be tested and contrasted with single-lead experiments. Using the same k-NN classifier the results proved superior to those obtained through a similar algorithm which does not employ a dissimilarity representation. The best Authentication EER went as low as 1:53% for a database employing 503 subjects. However, the employment of extra leads did not prove itself advantageous.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comunicação apresentada na 17.ª conferência anual da NISPACee, realizada de 14 a 16 de Maio de 2009.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resumo: A decisão da terapêutica hormonal no tratamento do cancro da mama baseiase na determinação do receptor de estrogénio alfa por imunohistoquímica (IHC). Contudo, a presença deste receptor não prediz a resposta em todas as situações, em parte devido a limitações do método IHC. Investigámos se a expressão dos genes ESR1 e ESR2, bem como a metilação dos respectivos promotores, pode estar relacionada com a evolução desfavorável de uma proporção de doentes tratados com tamoxifeno assim como com a perda dos receptores de estrogénio alfa (ERα) e beta (ERß). Amostras de 211 doentes com cancro da mama diagnosticado entre 1988 e 2004, fixadas em formalina e preservadas em parafina, foram utilizadas para a determinação por IHC da presença dos receptores ERα e ERß. O mRNA total do gene ESR1 e os níveis específicos do transcrito derivado do promotor C (ESR1_C), bem como dos transcritos ESR2_ß1, ESR2_ß2/cx, and ESR2_ß5 foram avaliados por Real-time PCR. Os promotores A e C do gene ESR1 e os promotores 0K e 0N do gene ESR2 foram investigados por análise de metilação dos dinucleotidos CpG usando bisulfite-PCR para análise com enzimas de restrição, ou para methylation specific PCR. Atendendo aos resultados promissores relacionados com a metilação do promotor do gene ESR1, complementamos o estudo com um método quantitativo por matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) suportado pelo software Epityper para a medição da metilação nos promotores A e C. Fez-se a avaliação da estabilidade do mRNA nas linhas celulares de cancro da mama MCF-7 e MDA-MB-231 tratadas com actinomicina D. Baixos níveis do transcrito ESR1_C associaram-se a uma melhor sobrevivência global (p = 0.017). Níveis elevados do transcrito ESR1_C associaram-se a uma resposta inferior ao tamoxifeno (HR = 2.48; CI 95% 1.24-4.99), um efeito mais pronunciado em doentes com tumores de fenótipo ERα/PgR duplamente positivo (HR = 3.41; CI 95% 1.45-8.04). A isoforma ESR1_C mostrou ter uma semi-vida prolongada, bem como uma estrutura secundária da região 5’UTR muito mais relaxada em comparação com a isoforma ESR1_A. A análise por Western-blot mostrou que ao nível da 21 proteína, a selectividade de promotores é indistinguivel. Não se detectou qualquer correlação entre os níveis das isoformas do gene ESR2 ou entre a metilação dos promotores do gene ESR2, e a detecção da proteína ERß. A metilação do promotor C do gene ESR1, e não do promotor A, foi responsável pela perda do receptor ERα. Estes resultados sugerem que os níveis do transcrito ESR1_C sejam usados como um novo potencial marcador para o prognóstico e predição de resposta ao tratamento com tamoxifeno em doentes com cancro da mama. Abstract: The decision of endocrine breast cancer treatment relies on ERα IHC-based assessment. However, ER positivity does not predict response in all cases in part due to IHC methodological limitations. We investigated whether ESR1 and ESR2 gene expression and respective promoter methylation may be related to non-favorable outcome of a proportion of tamoxifen treated patients as well as to ERα and ERß loss. Formalin-fixed paraffin-embedded breast cancer samples from 211 patients diagnosed between 1988 and 2004 were submitted to IHC-based ERα and ERß protein determination. ESR1 whole mRNA and promoter C specific transcript levels, as well as ESR2_ß1, ESR2_ß2/cx, and ESR2_ß5 transcripts were assessed by real-time PCR. ESR1 promoters A and C, and ESR2 promoters 0N and 0K were investigated by CpG methylation analysis using bisulfite-PCR for restriction analysis, or methylation specific PCR. Due to the promising results related to ESR1 promoter methylation, we have used a quantification method by matrixassisted laser desorption/ionization time-of-flight mass spectrometry (MALDITOF MS) together with Epityper software to measure methylation at promoters A and C. mRNA stability was assessed in actinomycin D treated MCF-7 and MDA-MB-231 cells. ERα protein was quantified using transiently transfected breast cancer cells. Low ESR1_C transcript levels were associated with better overall survival (p = 0.017). High levels of ESR1_C transcript were associated with non-favorable response in tamoxifen treated patients (HR = 2.48; CI 95% 1.24-4.99), an effect that was more pronounced in patients with ERα/PgR double-positive tumors (HR = 3.41; CI 95% 1.45-8.04). The ESR1_C isoform had a prolonged mRNA half-life and a more relaxed 5’UTR structure compared to ESR1_A isoform. Western-blot analysis showed that at protein level, the promoter selectivity is undistinguishable. There was no correlation between levels of ESR2 isoforms or ESR2 promoter methylation and ERß protein staining. ESR1 promoter C CpG methylation and not promoter A was responsible for ERα loss. We propose ESR1_C levels as a putative novel marker for breast cancer prognosis and prediction of tamoxifen response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the purpose of research a large quantity of anti-measles IgG working reference serum was needed. A pool of sera from five teenagers was prepared and named Alexandre Herculano (AH). In order to calibrate the AH serum, 18 EIA assays were performed testing in parallel AH and the 2nd International Standard 1990, Anti-Measles Antibody, 66/202 (IS) in a range of dilutions (from 1/50 to 1/25600). A method which compared parallel lines resulting from the graphic representation of the results of laboratory tests was used to estimate the power of AH relative to IS. A computer programme written by one of the authors was used to analyze the data and make potency estimates. Another method of analysis was used, comparing logistic curves relating serum concentrations with optical density by EIA. For that purpose an existing computer programme (WRANL) was used. The potency of AH relative to IS, by either method, was estimated to be 2.4. As IS has 5000 milli international units (mIU) of anti-measles IgG per millilitre (ml), we concluded that AH has 12000 mIU/ml.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Master Erasmus Mundus Crossways in European Humanities

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Bioquímica, Especialidade Bioquímica Estrutural

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased levels of plasma oxLDL, which is the oxidized fraction of Low Density Lipoprotein (LDL), are associated with atherosclerosis, an inflammatory disease, and the subsequent development of severe cardiovascular diseases that are today a major cause of death in modern countries. It is therefore important to find a reliable and fast assay to determine oxLDL in serum. A new immunosensor employing three monoclonal antibodies (mAbs) against oxLDL is proposed in this work as a quick and effective way to monitor oxLDL. The oxLDL was first employed to produce anti-oxLDL monoclonal antibodies by hybridoma cells that were previously obtained. The immunosensor was set-up by selfassembling cysteamine (Cyst) on a gold (Au) layer (4 mm diameter) of a disposable screen-printed electrode. Three mAbs were allowed to react with N-hydroxysuccinimide (NHS) and ethyl(dimethylaminopropyl)carbodiimide (EDAC), and subsequently incubated in the Au/Cys. Albumin from bovine serum (BSA) was immobilized further to ensure that other molecules apart from oxLDL could not bind to the electrode surface. All steps were followed by various characterization techniques such as electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV). The analytical operation of the immunosensor was obtained by incubating the sensing layer of the device in oxLDL for 15 minutes, prior to EIS and SWV. This was done by using standard oxLDL solutions prepared in foetal calf serum, in order to simulate patient's plasma with circulating oxLDL. A sensitive response was observed from 0.5 to 18.0 mg mL 1 . The device was successfully applied to determine the oxLDL fraction in real serum, without prior dilution or necessary chemical treatment. The use of multiple monoclonal antibodies on a biosensing platform seemed to be a successful approach to produce a specific response towards a complex multi-analyte target, correlating well with the level of oxLDL within atherosclerosis disease, in a simple, fast and cheap way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies forest fires from the perspective of dynamical systems. Burnt area, precipitation and atmospheric temperatures are interpreted as state variables of a complex system and the correlations between them are investigated by means of different mathematical tools. First, we use mutual information to reveal potential relationships in the data. Second, we adopt the state space portrait to characterize the system’s behavior. Third, we compare the annual state space curves and we apply clustering and visualization tools to unveil long-range patterns. We use forest fire data for Portugal, covering the years 1980–2003. The territory is divided into two regions (North and South), characterized by different climates and vegetation. The adopted methodology represents a new viewpoint in the context of forest fires, shedding light on a complex phenomenon that needs to be better understood in order to mitigate its devastating consequences, at both economical and environmental levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RESUMO: Os biomarcadores tumorais permitem identificar os doentes com maior risco de recorrência da doença, predizer a resposta tumoral à terapêutica e, finalmente, definir candidatos a novos alvos terapêuticos. Novos biomarcadores são especialmente necessários na abordagem clínica dos linfomas. Actualmente, esses tumores são diagnosticados através de uma combinação de características morfológicas, fenotípicas e moleculares, mas o prognóstico e o planeamento terapêutico estão quase exclusivamente dependentes de características clínicas. Estes factores clínicos são, na maioria dos linfomas, insuficientes numa proporção significativa dos doentes, em particular, aqueles com pior prognóstico. O linfoma folicular (LF) é, globalmente, o segundo subtipo mais comum de linfoma. É tipicamente uma doença indolente com uma sobrevida média entre os 8 e 12 anos, mas é geralmente fatal quando se transforma num linfoma agressivo de alto grau, habitualmente o linfoma difuso de grandes células B (LDGCB). Morfologicamente e funcionalmente, as células do LF recapitulam as células normais do centro germinativo na sua dependência de sobrevivência do microambiente não-tumoral, especialmente das células do sistema imunológico. Biomarcadores preditivos de transformação não existem pelo que um melhor conhecimento da biologia intrínseca de progressão do LF poderá revelar novos candidatos. Nesta tese descrevo duas abordagens distintas para a descoberta de novos biomarcadores. A primeira, o estudo da expressão global de genes ('genomics') obtidos por técnicas de alto rendimento que analisam todo o genoma humano sequenciado, permitindo identificar novas anomalias genéticas que possam representar mecanismos biológicos importantes de transformação. São descritos novos genes e alterações genómicas associados à transformação do LF, sendo especialmente relevantes as relacionadas com os eventos iniciais de transformação em LDGCB. A segunda, baseou-se em várias hipóteses centradas no microambiente do LF, rico em vários tipos de células nãomalignas. Os estudos imunoarquitectural de macrófagos, células T regulatórias e densidade de microvasos efectuado em biopsias de diagnóstico de doentes com LF tratados uniformemente correlacionaram-se significativamente, e independentemente dos critérios clínicos, com a evolução clínica e, mais importante, com o risco de transformação em LDGCB. Nesta tese, foram preferencialmente utilizadas (e optimizadas) técnicas que permitam o uso de amostras fixadas em parafina e formalina (FFPET). Estas são facilmente acessíveis a partir das biopsias de diagnóstico de rotina presentes nos arquivos de todos os departamentos de patologia, facilitando uma transição rápida dos novos marcadores para a prática clínica. Embora o FL fosse o tema principal da tese, os novos achados permitiram estender facilmente hipóteses semelhantes a outros subtipos de linfoma. Assim, são propostos e validados vários biomarcadores promissores e relacionados com o microambiente não tumoral, sobretudo dependentes das células do sistema imunológico, como contribuintes importantes para a biologia dos linfomas. Estes sugerem novas opções para a abordagem clínica destas doenças e, eventualmente, novos alvos terapêuticos.------------- ABSTRACT: Cancer biomarkers provide an opportunity to identify those patients most at risk for disease recurrence, predict which tumours will respond to different therapeutic approaches and ultimately define candidate biomarkers that may serve as targets for personalized therapy. New biomarkers are especially needed in the management of lymphoid cancers. At present, these tumours are diagnosed using a combination of morphologic, phenotypic and molecular features but prognosis and overall survival are mostly dependent on clinical characteristics. In most lymphoma types, these imprecisely assess a significant proportion of patients, in particular, those with very poor outcomes. Follicular lymphoma (FL) is the second most common lymphoma subtype worldwide. It is typically an indolent disease with current median survivals in the range of 8-12 years, but is usually fatal when it transforms into an aggressive high-grade lymphoma, characteristically Diffuse Large B Cell Lymphoma (DLBCL). Morphologically and functionally it recapitulates the normal cells of the germinal center with its survival dependency on non-malignant immune and immunerelated cells. Informative markers of transformation related to the intrinsic biology of FL progression are needed. Within this thesis two separate approaches to biomarker discovery were employed. The first was to study the global expression of genes (‘genomics’) obtained using high-throughput, wholegenome-wide approaches that offered the possibility for discovery of new genetic abnormalities that might represent the important biological mechanisms of transformation. Gene signatures associated with early events of transformation were found. Another approach relied on hypothesis-driven concepts focusing upon the microenvironment, rich in several non-malignant cell types. The immunoarchitectural studies of macrophages, regulatory T cells and microvessel density on diagnostic biopsies of uniformly treated FL patients significantly predicted clinical outcome and, importantly, also informed on the risk of transformation. Techniques that enabled the use of routine formalin fixed paraffin embedded diagnostic specimens from the pathology department archives were preferentially used in this thesis with the goal of fulfilling a rapid bench-to-beside” translation for these new findings. Although FL was the main subject of the thesis the new findings and hypotheses allowed easy transition into other lymphoma types. Several promising biomarkers were proposed and validated including the implication of several non-neoplastic immune cells as important contributors to lymphoma biology, opening new options for better treatment planning and eventually new therapeutic targets and candidate therapeutics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indirect immunofluorescence is the method recommended for the diagnosis of visceral leishmanisis in dogs, however, the accuracy of this technique is low and its use on a large scale is limited. Since ELISA does not present these limitations, this technique might be an option for the detection of IgG or specific IgG1 and IgG2 subclasses. Canine ehrlichiosis is an important differential diagnosis of American Visceral Leishmaniasis (AVL). The present study compared ELISA using Leishmania chagasi and Leishmania braziliensis antigen for the detection of anti-Leishmania IgG and subclasses in serum samples from 37 dogs naturally infected with L. chagasi (AVL) and in samples from four dogs co-infected with L. braziliensis and L. chagasi (CI). The occurrence of cross-reactivity was investigated in control serum samples of 17 healthy dogs (HC) and 35 infected with Ehrlichia canis (EC). The mean optical density obtained for the detection of IgG was significantly higher when L. chagasi antigen was used, and was also higher in subgroup VLs (symptomatic) compared to subgroup Vla (asymptomatic). The correlation between IgG and IgG1 was low. The present results suggest that IgG ELISA using homologous antigen yields the best results, permitting the diagnosis of asymptomatic L. chagasi infection and the discrimination between cases of AVL and ehrlichiosis in dogs.