984 resultados para deep-water evolution


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Complex investigations of recent and ancient Black Sea sediments from the outer shelf, continental slope, and deep-water basin of the Russian Black Sea sector have been carried out. Samples were collected during Cruise 100 of R/V Professor Shtokman organized by the P.P. Shirshov Institute of Oceanology (March 2009) and expedition of UZHMORGEO (summer 2006). Rates of the main anaerobic processes during diagenesis (sulfate reduction, dark CO2 assimilation, methanogenesis, and methane oxidation) were studied for the first time in sediment cores of the studied area. Two peaks in the rate of microbial processes and two sources of these processes were identified: the upper peak near the water-sediment contact is related to solar energy (OM substrate of the water column) and the lower peak at the base of ancient Black Sea sediments with high(>1 mmol) methane concentration related to energy of anaerobic methane oxidation. New labile OM formed during this process is utilized by other groups of microorganisms. According to experimental data, daily rate of anaerobic methane oxidation is many times higher than that of methanogenesis, which unambiguously indicates migration nature of the main part of methane.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Early Miocene to Quaternary benthic foraminifers have been quantitatively studied (>63 ?m size fraction) in a southwest Pacific traverse of DSDP sites at depths from about 1300 to 3200 m down the Lord Howe Rise (Site 590,1299 m; Site 591, 2131 m; Site 206, 3196 m). Benthic foraminiferal species smaller than 150 µm are by far dominant in the samples, averaging from 78 to 89% of the total benthic foraminiferal assemblages in the three sites examined. Although about 150 benthic foraminiferal species or taxonomic groups have been identified, only a few species dominate the assemblages. These dominant species include Epistominella exigua, E. rotunda, and Globocassidulina subglobosa, which prevail in the three sites, and Oridorsalis umbonatus, E. umbonifera, and Cassidulina carinata, which occur usually in frequencies of between 10 and 30%. Faunal changes in Neogene benthic foraminiferal assemblages are not similar in each of the three sites, but faunal successions are most similar between the two shallowest sites. The deepest site differs in composition and distribution of dominant species. There are three intervals during which the most important changes occur in benthic foraminiferal assemblages: the early middle Miocene (14 Ma; the Orbulina suturalis Zone and the Globorotalia fohsi s.l. Zone); the late Miocene (6 Ma; the Globigerina nepenthes Zone) and near the Pliocene/Pleistocene boundary at about 2 Ma. A Q-mode factor analysis of the faunal data has assisted in recognizing assemblage changes during the Neogene at each of the sites. Early Miocene assemblages were dominated by Globocassidulina subglobosa at Site 590 (1299 m), by G. subglobosa and Oridorsalis umbonatus at Site 591 (2131 m), and by G. subglobosa, E. exigua, and Bolivina pusilla at Site 206 (3196 m). In the early middle Miocene at Sites 590 and 591, a marked increase occurred in the frequencies of E. exigua. Epistominella exigua reached maximum abundance in the early Miocene in the deeper Site 206, and in the middle and early late Miocene in the shallower Sites 590 and 591. In the late Miocene, a spike occurred in the frequencies of E. umbonifera in Site 206, whereas the dominant species changed from E. exigua to E. rotunda at Site 590. Latest Miocene to late Pliocene assemblages were dominated by E. rotunda at Site 590, by E. exigua at Site 591, and by G. subglobosa-E. exigua (early Pliocene) and E. rotunda-E. exigua (late Pliocene) at Site 206. At the Pliocene/Pleistocene boundary, E. exigua temporarily diminished in importance at Sites 591 and 206. Quaternary assemblages were dominated by E. rotunda and Cassidulina carinata at Site 590, by E. rotunda at Site 591, and by E. exigua at Site 206. These major faunal changes are all associated with known major paleoceanographic events-the middle Miocene development of the Antarctic ice sheet; the latest Miocene global cooling and increased polar glaciation; and the onset of quasiperiodic glaciation of the Northern Hemisphere. These major paleoceanographic events undoubtedly had a profound effect on the intermediate and deep water mass structure of the Tasman Sea as recorded by changes in benthic foraminiferal assemblages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analyses of extractable organic matter from selected core samples obtained at DSDP Site 535 in the eastern Gulf of Mexico show that the asphalt (or tar) and adjacent oil stains in Lower Cretaceous fractured limestones have a common origin and are not derived from the surrounding organic-matter-rich limestones. Organic matter indigenous to those surrounding limestones was shown to be thermally immature and incapable of yielding the hydrocarbon mixture discovered. In contrast, the oil-stained and asphaltic material appears to be a post-migration alteration product of a mature oil that has migrated from source rocks deeper in the section, or from stratigraphically equivalent but compositionally different source-facies down-dip from the drill site. Further, hydrocarbons of the altered petroleum residues were shown to be similar to Sunniland-type oils found in Lower Cretaceous rocks of South Florida. The results suggest that shallowwater, platform-type source-rock facies similar to those that generated Sunniland-type oils, or deeper-water facies having comparable oil-generating material, are present in this deep-water (> 3000 m) environment. These findings have important implications for the petroleum potential in the eastern Gulf of Mexico and for certain types of deep-sea sediments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Behavior of rare earth elements (REE) was examined in oceanic phillipsites collected from four horizons of eupelagic clay in the Southwest Basin of the Pacific Ocean. REE concentrations were determined in >50 ?m size fraction phillipsite samples by the ICP-MS method. Composition of separate phillipsite aggregates was studied by electron microprobe and secondary ion mass-spectrometry. Rare earth elements in phillipsite samples are related to admixture of ferrocalcium hydroxophosphates. Analysis of separate phillipsite aggregates reveals low (<0.1-18.1 ppm) REE(III) concentrations. Ce concentration varies between 2.7 and 140 ppm. The correlation analysis shows that REE(III) present in admixture of iron oxyhydroxides in separate phillipsite aggregates. Based on the REE(III) concentration in iron oxyhydroxides we can identify two generations of phillipsite aggregates. Massive rounded aggregates (phillipsite I) are depleted in REE, while pseudorhombic (phillipsite II) aggregates are enriched in REE and marked by a positive Ce anomaly. Oceanic phillipsites do not accumulate REE or inherit the REE signature of volcaniclastic material and oceanic deep water. Hence, REE distribution in phillipsites does not depend on sedimentation rate and composition of host sediments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantitative radiolarian assemblage analysis has been conducted on middle and upper Eocene sediments (Zones RP16 to RP18) from Ocean Drilling Program Site 1052 in order to establish the radiolarian magnetobiochronology and determine the nature of the faunal turnover across the middle/late Eocene boundary in the western North Atlantic Ocean. We recognize and calibrate forty-five radiolarian bioevents to the magneto- and cyclo-stratigraphy from Site 1052 to enhance the biochronologic resolution for the middle and late Eocene. Our data is compared to sites in the equatorial Pacific (Leg 199) to access the diachrony of biostratigraphic events. Eleven bioevents are good biostratigraphic markers for tropical/subtropical locations (south of 30°N). The primary markers (lowest occurrences of Cryptocarpium azyx and Calocyclas bandyca) which are tropical zonal boundary markers for Zones RP17 and RP18 provide robust biohorizons for correlation and age determination from the low to middle latitudes and between the Atlantic and Pacific Oceans. Some other radiolarian bioevents are highly diachronous (<1 million years) between oceanic basins. A significant faunal turnover of radiolarians is recognized within Chron C17n.3n (37.7 Ma) where 13 radiolarian species disappear rapidly in less than 100 kyr and 4 new species originate. The radiolarian faunal turnover coincides with a major extinction in planktonic foraminifera. We name the turnover phase, the Middle/Late Eocene Turnover (MLET). Assemblage analysis reveals the MLET to be associated with a decrease in low-mid latitude taxa and increase in cosmopolitan taxa and radiolarian accumulation rates. The MLET might be related to increased biological productivity rather than to surface-water cooling.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Redox conditions and compositions of bottom sediments and sedimentary pore waters in the area of the hydrothermal vent in the Frolikha Bay (Baikal Lake) are under discussion. According to obtained results, the submarine vent and its companion spring nearby on the land originate from a common source. The most convincing evidence for their relation comes from proximity of stable oxygen and hydrogen isotope compositions in the pore waters and spring water. The isotope composition indicates meteoric origin of the pore waters, but their major- and minor element compositions have influence of deep water, which may seep through the permeable faulted crust. Although the pore waters near the submarine vent have specific enrichment in major and minor constituents, hydrothermal discharge at the Baikal bottom causes minor influence on water composition of the Baikal Lake, unlike freshwater lakes in rifts of the East Africa and North America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ice core records demonstrate a glacial-interglacial atmospheric CO2 increase by ~100 ppm, while 14C calibration efforts document a strong decrease in atmospheric 14C concentration during this period. A calculated transfer of ~530 Gt of 14C depleted carbon is required to produce the deglacial coeval rise of carbon in the atmosphere and terrestrial biosphere. This amount is usually ascribed to oceanic carbon release, although the actual mechanisms remained elusive, since an adequately old and carbon-enriched deep-ocean reservoir seemed unlikely. Here we present a new, though still fragmentary, ocean-wide d14C dataset showing that during the Last Glacial Maximum (LGM) and Heinrich Stadial 1 (HS-1) the maximum 14C age difference between ocean deep waters and the atmosphere exceeded the modern values by up to 1500 14C yr, in the extreme reaching 5100 14C yr. Below 2000 m depth the 14C ventilation age of modern ocean waters is directly linked to the concentration of dissolved inorganic carbon (DIC). We propose as working hypothesis that the modern regression of DIC vs d14C also applies for LGM times, which implies that a mean LGM aging by ~600 14C yr corresponded to a global rise of ~85-115 µmol DIC/kg in the deep ocean. Thus, the prolonged residence time of ocean deep waters may indeed have made it possible to absorb an additional ~730-980 Gt DIC, one third of which possibly originated from intermediate waters. We also infer that LGM deep-water O2 dropped to suboxic values of <10µmol/kg in the Atlantic sector of the Southern Ocean, possibly also in the subpolar North Pacific. The outlined deglacial transfer of the extra aged, deep-ocean carbon to the atmosphere via the dynamic ocean-atmosphere carbon exchange would be sufficient to account for two trends observed, (1) for the increase in atmospheric CO2 and (2) for the 190-permil drop in atmospheric d14C during the so-called HS-1 'Mystery Interval', when atmospheric 14C production rates were largely constant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to its strong gradient in salinity and small temperature gradient the Mediterranean provides an ideal setting to study the impact of salinity on the incorporation of Mg into foraminiferal tests. We have investigated tests of Globorotalia inflata and Globigerina bulloides in plankton tow and core top samples from the Western Mediterranean using ICP-OES for bulk analyses and LA-ICP-MS for analyses of individual chambers in single specimens. Mg/Ca observed in G. inflata are consistent with existing calibrations, whereas G. bulloides had significantly higher Mg/Ca than predicted, particularly in core top samples from the easterly stations. Scanning Electron Microscopy and Laser Ablation ICP-MS revealed secondary overgrowths on some tests, which could explain the observed high core top Mg/Ca. We suggest that the Mediterranean intermediate and deep water supersaturated with respect to calcite cause these overgrowths and therefore increased bulk Mg/Ca. However, the different species are influenced by diagenesis to different degrees probably due to different test morphologies. Our results provide new perspectives on reported anomalously high Mg/Ca in sedimentary foraminifera and the applicability of the Mg/Ca paleothermometry in high salinity settings, by showing that (1) part of the signal is generated by precipitation of inorganic calcite on the foraminifer test due to increased calcite saturation state of the water and (2) species with high surface-to-volume shell surfaces are potentially more affected by secondary Mg-rich calcite encrustation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Samples of Lower to middle Cretaceous rocks from ODP Sites 638, 640, and 641, drilled on the Galicia continental margin in the northeast Atlantic, have been investigated by organic geochemical methods (i.e., organic carbon determination, Rock-Eval pyrolysis, kerogen microscopy, gas chromatography, and gas chromatography/mass spectrometry) to define the Organofacies types and the depositional environments of these sediments. The results of this study fit well into the general picture drawn for the depositional history of the organic matter in Cretaceous organic-carbon-rich sediments in the North Atlantic from previous DSDP investigations. During the Valanginian to Albian, terrigenous organic carbon dominated the organic matter deposited on the Galicia continental margin. Cyclic changes in total organic carbon content were probably controlled by climatic-triggered changes in the supply of terrigenous organic matter from the nearby continent. A drastic change in depositional environment must have occurred near the Cenomanian/Turonian boundary. The preservation of large amounts of marine organic carbon in these sediments was probably caused by anoxic deep-water conditions during that time, rather than high productivity. All of the primary organic matter of the sediment samples investigated is thermally immature, as indicated by very low vitrinite reflectance values.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the Middle Miocene climate transition about 14 million years ago, the Antarctic ice sheet expanded to near-modern volume. Surprisingly, this ice sheet growth was accompanied by a warming in the surface waters of the Southern Ocean, whereas a slight deep-water temperature increase was delayed by more than 200 thousand years. Here we use a coupled atmosphere-ocean model to assess the relative effects of changes in atmospheric CO2 concentration and ice sheet growth on regional and global temperatures. In the simulations, changes in the wind field associated with the growth of the ice sheet induce changes in ocean circulation, deep-water formation and sea-ice cover that result in sea surface warming and deep-water cooling in large swaths of the Atlantic and Indian ocean sectors of the Southern Ocean. We interpret these changes as the dominant ocean surface response to a 100-thousand-year phase of massive ice growth in Antarctica. A rise in global annual mean temperatures is also seen in response to increased Antarctic ice surface elevation. In contrast, the longer-term surface and deep-water temperature trends are dominated by changes in atmospheric CO2 concentration. We therefore conclude that the climatic and oceanographic impacts of the Miocene expansion of the Antarctic ice sheet are governed by a complex interplay between wind field, ocean circulation and the sea-ice system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ODP Leg 119 drilled 11 sites on the Kerguelen Plateau (southern Indian Ocean) and Prydz Bay (East Antarctica). Upper Pliocene through Quaternary sediments were recovered at Site 736 on the northern Kerguelen Plateau; calcareous nannofossils occurred in only a few samples. Over 700 m of middle Eocene through Quaternary sediments was cored at Site 737 on the northern Kerguelen Plateau, and calcareous nannofossils are abundant in the middle Eocene through the middle Miocene sediments. Nearly 500 m of sediments ranging from the lower Turanian to the Quaternary was recovered at Site 738 on the southern Kerguelen Plateau; calcareous nannofossils are abundant from the Miocene downward. Calcareous nannofossils are also abundant in the upper Eocene through Miocene section from Site 744 on the southern Kerguelen Plateau. Except for Core 119-746A-13H, the Neogene sequences drilled at deep-water Sites 745 and 746 off the southern Kerguelen Plateau are devoid of calcareous nannofossils. Occurrences of calcareous nannofossils were generally rare and sporadic at Sites 739 and 742 in Prydz Bay and suggest that the diamictite sequences recovered is as old as middle Eocene-early Oligocene age. Other sites drilled in Prydz Bay (Sites 740, 741, and 743) did not yield calcareous nannofossils. Species diversity of calcareous nannofossils was low (about a dozen) in the southern Indian Ocean in the Late Cretaceous. High-latitude nanno floral characteristics are apparent after the Cretaceous/Tertiary boundary extinctions. Cold climatic conditions limited Oligocene calcareous nannofossil assemblages to fewer than a dozen species, and extinctions of species generally were not compensated by originations of new species. Only a few species of calcareous nannofossils were found in the Miocene sequences, in which Coccolithuspelagicus and one or two species of Reticulofenestra exhibit extreme (0%-100%) fluctuations in assemblage dominance, and these fluctuations may reflect rapid fluctuations in the surface-water temperatures. Further deterioration of climate in the late Neogene essentially excluded calcareous nannoplankton from the Southern Ocean. Significantly warmer water conditions during part of the early-middle Pleistocene were inferred by a few lower-middle Pleistocene calcareous nannofossil species found on the Kerguelen Plateau. The calcareous nannofossil zonation of Roth (1978 doi:10.2973/dsdp.proc.44.134.1978) can be applied to the Upper Cretaceous section recovered at Site 738, and the zonation of Okada and Bukry (1980 doi:10.1016/0377-8398(80)90016-X) can be applied without much difficulty to the Paleocene to middle Eocene sequences from the Kerguelen Plateau. However, some conventional upper Paleogene markers are not useful for southern high latitudes, whereas a few nonconventional species events are useful for subdividing the upper Paleogene sequences. The latter species events include the first occurrence (FO) of Reticulofenestra reticulata, the FO and last occurrence (LO) of Reticulofenestra oamaruensis, the LO of Isthmolithus recurvus, and the LO of Chiasmolithus altus. As the Neogene sequences from the southern Indian Ocean contain only a few long-ranging, cold-water species, or are devoid of coccoliths, calcareous nannofossil zonations remain virtually unworkable for the Neogene in the high-latitude southern Indian Ocean as in other sectors of the Southern Ocean.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The organic facies of Early and middle Cretaceous sediments drilled at DSDP Site 534 is dominated by terrestrially derived plant remains and charcoal. Marine organic matter is mixed with the terrestrial components, but through much of this period was diluted by the terrestrial material. The supply of terrestrial organic matter was high here because of the nearness of the shore and high runoff promoted by a humid temperate coastal climate. Reducing conditions favored preservation of both marine and terrestrial organic matter, the terrestrial materials having reached the site mostly in turbidity currents or in the slow-moving, near-bottom nepheloid layer. An increase in the abundance of terrestrial organic matter occurred when the sea level dropped in the Valanginian and again in the Aptian-Albian, because rivers dumped more terrigenous elastics into the Basin and marine productivity was lower at these times than when sea level was high. A model is proposed to explain the predominance of reducing conditions in the Valanginian-Aptian, of oxidizing conditions in the late Aptian, and of reducing conditions in the Albian-Cenomanian. The model involves influx of oxygen-poor subsurface waters from the Pacific at times of high or rising sea level (Valanginian-Aptian, and Albian- Cenomanian) and restriction of that influx at times of low sea level (late Aptian). In the absence of a supply of oxygenpoor deep water, the bottom waters of the North Atlantic became oxidizing in the late Aptian, probably in response to development of a Mediterranean type of circulation. The influx of nutrients from the Pacific led to an increase in productivity through time, accounting for an increase in the proportion of marine organic matter from the Valanginian into the Aptian and from the Albian to the Cenomanian. Conditions were dominantly oxidizing through the Middle Jurassic into the Berriasian, with temporary exceptions when bottom waters became reducing, as in the Callovian. Mostly terrestrial and some marine organic matter accumulated during the Callovian reducing episode. When Jurassic bottom waters were oxidizing, only terrestrial organic matter was buried in the sediments, in very small amounts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An extensive, high-resolution, sedimentological-geochemical survey was done using geo-acoustics, XRF-core scans, ICP-AES, AMS 14C-dating and grain size analyses of sediments in 11 cores from the Gulf of Taranto, the southern Adriatic Sea, and the central Ionian Sea spanning the last 16 cal. ka BP. Comparable results were obtained for cores from the Gallipoli Shelf (eastern Gulf of Taranto), and the southern Adriatic Sea suggesting that the dominant provenance of Gallipoli Shelf sediments is from the western Adriatic mud belt. The 210Pb and 14C-dated high-accumulation-rate sediments permit a detailed reconstruction of climate variability over the last 16 cal. ka BP. Although, the Glacial-Interglacial transition is generally dry and stable these conditions are interrupted by two phases of increased detrital input during the Bølling-Allerød and the late Younger Dryas. The event during the Younger Dryas period is characterized by increased sediment inputs from southern Italian sources. This suggests that run-off was higher in southern- compared to northern Italy. At approximately ~ 7 cal. ka BP, increased detrital input from the Adriatic mud belt, related to sea level rise and the onset of deep water formation in the Adriatic Sea, is observed and is coincident with the end of sapropel S1 formation in the southern Adriatic Sea. During the mid-to-late Holocene we observed millennial-scale events of increased detrital input, e.g. during the Roman Humid Period, and of decreased detrital input, e.g., Medieval Warm Period. These dry/wet spells are consistent with variability in the North Atlantic Oscillation (NAO). A negative state of the NAO and thus a more advanced penetration of the westerlies into the central Mediterranean, that result in wet conditions in the research area concord with events of high detrital input e.g., during the Roman Humid Period. In contrast, a positive state of the NAO, resulting in dry conditions in the Mediterranean, dominated during events of rapid climate change such as the Medieval Warm Period and the Bronze Age.