873 resultados para decision support systems (DSS)
Resumo:
Part 21: Mobility and Logistics
Resumo:
This paper addresses the problem of ensuring compliance of business processes, implemented within and across organisational boundaries, with the constraints stated in related business contracts. In order to deal with the complexity of this problem we propose two solutions that allow for a systematic and increasingly automated support for addressing two specific compliance issues. One solution provides a set of guidelines for progressively transforming contract conditions into business processes that are consistent with contract conditions thus avoiding violation of the rules in contract. Another solution compares rules in business contracts and rules in business processes to check for possible inconsistencies. Both approaches rely on a computer interpretable representation of contract conditions that embodies contract semantics. This semantics is described in terms of a logic based formalism allowing for the description of obligations, prohibitions, permissions and violations conditions in contracts. This semantics was based on an analysis of typical building blocks of many commercial, financial and government contracts. The study proved that our contract formalism provides a good foundation for describing key types of conditions in contracts, and has also given several insights into valuable transformation techniques and formalisms needed to establish better alignment between these two, traditionally separate areas of research and endeavour. The study also revealed a number of new areas of research, some of which we intend to address in near future.
Resumo:
This paper reports on a system for automated agent negotiation, based on a formal and executable approach to capture the behavior of parties involved in a negotiation. It uses the JADE agent framework, and its major distinctive feature is the use of declarative negotiation strategies. The negotiation strategies are expressed in a declarative rules language, defeasible logic, and are applied using the implemented system DR-DEVICE. The key ideas and the overall system architecture are described, and a particular negotiation case is presented in detail.
Resumo:
Neste artigo é apresentado um Sistema de Apoio à Decisão Espacial (SADE) onde os decisores podem facilmente definir diferentes tipos de problemas espaciais recorrendo a diferentes categorias de objetos, pré-definidas ou a definir, associando- lhes características com ou sem dependência espacial, e indicando formas de interferência (impactos) entre essas caracte- rísticas/propriedades. A análise espacial para determinação ou avaliação de configurações alternativas para a localização de diferentes tipos de ocorrências espaciais será feita através da utilização interativa do SADE de acordo com conjuntos de regras intrínsecas aos vários elementos gráficos (objetos, categorias, características, impactos) utilizados na definição dos problemas. O teste à generalidade representativa e analítica do SADE proposto é efectuado recorrendo a um problema concreto, suficientemente específico e complexo, relativo à aplicação de modelos gaussianos para o estudo da dispersão atmosférica de eventuais poluentes resultantes do tratamento de resíduos sólidos. A região em estudo está limitada, neste exemplo, ao município de Coimbra, Portugal. Para este município estão acessíveis, e são utilizados, os dados demográficos ao nível da secção de voto (censos oficiais) e, como tal, é possível a realização de um estudo realístico do impacto com populações humanas.
Resumo:
In recent years, power systems have experienced many changes in their paradigm. The introduction of new players in the management of distributed generation leads to the decentralization of control and decision-making, so that each player is able to play in the market environment. In the new context, it will be very relevant that aggregator players allow midsize, small and micro players to act in a competitive environment. In order to achieve their objectives, virtual power players and single players are required to optimize their energy resource management process. To achieve this, it is essential to have financial resources capable of providing access to appropriate decision support tools. As small players have difficulties in having access to such tools, it is necessary that these players can benefit from alternative methodologies to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), and intended to support smaller players. In this case the present methodology uses a training set that is created using energy resource scheduling solutions obtained using a mixed-integer linear programming (MIP) approach as the reference optimization methodology. The trained network is used to obtain locational marginal prices in a distribution network. The main goal of the paper is to verify the accuracy of the ANN based approach. Moreover, the use of a single ANN is compared with the use of two or more ANN to forecast the locational marginal price.
Resumo:
Scheduling resolution requires the intervention of highly skilled human problemsolvers. This is a very hard and challenging domain because current systems are becoming more and more complex, distributed, interconnected and subject to rapidly changing. A natural Autonomic Computing evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference. This paper addresses the resolution of complex scheduling problems using cooperative negotiation. A Multi-Agent Autonomic and Meta-heuristics based framework with self-configuring capabilities is proposed.
Resumo:
Scheduling is a critical function that is present throughout many industries and applications. A great need exists for developing scheduling approaches that can be applied to a number of different scheduling problems with significant impact on performance of business organizations. A challenge is emerging in the design of scheduling support systems for manufacturing environments where dynamic adaptation and optimization become increasingly important. In this paper, we describe a Self-Optimizing Mechanism for Scheduling System through Nature Inspired Optimization Techniques (NIT).
Resumo:
The future scenarios for operation of smart grids are likely to include a large diversity of players, of different types and sizes. With control and decision making being decentralized over the network, intelligence should also be decentralized so that every player is able to play in the market environment. In the new context, aggregator players, enabling medium, small, and even micro size players to act in a competitive environment, will be very relevant. Virtual Power Players (VPP) and single players must optimize their energy resource management in order to accomplish their goals. This is relatively easy to larger players, with financial means to have access to adequate decision support tools, to support decision making concerning their optimal resource schedule. However, the smaller players have difficulties in accessing this kind of tools. So, it is required that these smaller players can be offered alternative methods to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), intended to support smaller players’ resource scheduling. The used methodology uses a training set that is built using the energy resource scheduling solutions obtained with a reference optimization methodology, a mixed-integer non-linear programming (MINLP) in this case. The trained network is able to achieve good schedule results requiring modest computational means.
Resumo:
This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimization techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Players (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper details some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study based on real data.
Resumo:
Electricity market players operating in a liberalized environment require adequate decision support tools, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. This paper deals with short-term predication of day-ahead spinning reserve (SR) requirement that helps the ISO to make effective and timely decisions. Based on these forecasted information, market participants can use strategic bidding for day-ahead SR market. The proposed concepts and methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A case study based on California ISO (CAISO) data is included; the forecasted results are presented and compared with CAISO published forecast.
Resumo:
Power systems operation in a liberalized environment requires that market players have access to adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper deals with ancillary services negotiation in electricity markets. The proposed concepts and methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of ancillary services using two different methods (Linear Programming and Genetic Algorithm approaches) is included in the paper.
Resumo:
Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tool must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case based on California Independent System Operator (CAISO) data concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.
Resumo:
Shopping centers present a rich and heterogeneous environment, where IT systems can be implemented in order to support the needs of its actors. However, due to the environment complexity, several feasibility issues emerge when designing both the logical and physical architecture of such systems. Additionally, the system must be able to cope with the individual needs of each actor, and provide services that are easily adopted by them, taking into account several sociological and economical aspects. In this sense, we present an overview of current support systems for shopping center environments. From this overview, a high-level model of the domain (involving actors and services) is described along with challenges and possible features in the context of current Semantic Web, mobile device and sensor technologies.
Resumo:
Copyright 2013 Springer Netherlands.
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia