880 resultados para convective parameterization scheme
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The scheme is based on Ami Harten's ideas (Harten, 1994), the main tools coming from wavelet theory, in the framework of multiresolution analysis for cell averages. But instead of evolving cell averages on the finest uniform level, we propose to evolve just the cell averages on the grid determined by the significant wavelet coefficients. Typically, there are few cells in each time step, big cells on smooth regions, and smaller ones close to irregularities of the solution. For the numerical flux, we use a simple uniform central finite difference scheme, adapted to the size of each cell. If any of the required neighboring cell averages is not present, it is interpolated from coarser scales. But we switch to ENO scheme in the finest part of the grids. To show the feasibility and efficiency of the method, it is applied to a system arising in polymer-flooding of an oil reservoir. In terms of CPU time and memory requirements, it outperforms Harten's multiresolution algorithm.The proposed method applies to systems of conservation laws in 1Dpartial derivative(t)u(x, t) + partial derivative(x)f(u(x, t)) = 0, u(x, t) is an element of R-m. (1)In the spirit of finite volume methods, we shall consider the explicit schemeupsilon(mu)(n+1) = upsilon(mu)(n) - Deltat/hmu ((f) over bar (mu) - (f) over bar (mu)-) = [Dupsilon(n)](mu), (2)where mu is a point of an irregular grid Gamma, mu(-) is the left neighbor of A in Gamma, upsilon(mu)(n) approximate to 1/mu-mu(-) integral(mu-)(mu) u(x, t(n))dx are approximated cell averages of the solution, (f) over bar (mu) = (f) over bar (mu)(upsilon(n)) are the numerical fluxes, and D is the numerical evolution operator of the scheme.According to the definition of (f) over bar (mu), several schemes of this type have been proposed and successfully applied (LeVeque, 1990). Godunov, Lax-Wendroff, and ENO are some of the popular names. Godunov scheme resolves well the shocks, but accuracy (of first order) is poor in smooth regions. Lax-Wendroff is of second order, but produces dangerous oscillations close to shocks. ENO schemes are good alternatives, with high order and without serious oscillations. But the price is high computational cost.Ami Harten proposed in (Harten, 1994) a simple strategy to save expensive ENO flux calculations. The basic tools come from multiresolution analysis for cell averages on uniform grids, and the principle is that wavelet coefficients can be used for the characterization of local smoothness.. Typically, only few wavelet coefficients are significant. At the finest level, they indicate discontinuity points, where ENO numerical fluxes are computed exactly. Elsewhere, cheaper fluxes can be safely used, or just interpolated from coarser scales. Different applications of this principle have been explored by several authors, see for example (G-Muller and Muller, 1998).Our scheme also uses Ami Harten's ideas. But instead of evolving the cell averages on the finest uniform level, we propose to evolve the cell averages on sparse grids associated with the significant wavelet coefficients. This means that the total number of cells is small, with big cells in smooth regions and smaller ones close to irregularities. This task requires improved new tools, which are described next.
Resumo:
fit the context of normalized variable formulation (NVF) of Leonard and total variation diminishing (TVD) constraints of Harten. this paper presents an extension of it previous work by the authors for solving unsteady incompressible flow problems. The main contributions of the paper are threefold. First, it presents the results of the development and implementation of a bounded high order upwind adaptative QUICKEST scheme in the 3D robust code (Freeflow), for the numerical solution of the full incompressible Navier-Stokes equations. Second, it reports numerical simulation results for 1D hock tube problem, 2D impinging jet and 2D/3D broken clam flows. Furthermore, these results are compared with existing analytical and experimental data. and third, it presents the application of the numerical method for solving 3D free surface flow problems. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved,
Resumo:
Continuation methods have been long used in P-V curve tracing due to their efficiency in the resolution of ill-conditioned cases, with close to singular Jacobian matrices, such as the maximum loading point of power systems. Several parameterization techniques have been proposed to avoid matrix singularity and successfully solve those cases. This paper presents a simple geometric parameterization technique to overcome the singularity of the Jacobian matrix by the addition of a line equations located at the plane determined by a bus voltage magnitude and the loading factor. This technique enlarges the set of voltage variables that can be used to whole P-V curve tracing, without ill-conditioning problems and no need of parameter changes. Simulation results, obtained for large realistic Brazilian and American power systems, show that the robustness and efficiency of the conventional power flow are not only preserved but also improved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Expressions for the Baker-Akhiezer function and their logarithmic space and time derivatives are derived in terms of the matrix elements of U - V matrices and 'squared basis functions'. These expressions generalize the well known formulas for the KdV equation case and establish links between different forms of the Whitham averaging procedure.
Resumo:
Traditional cutoff regularization schemes of the Nambu-Jona-Lasinio model limit the applicability of the model to energy-momentum scales much below the value of the regularizing cutoff. In particular, the model cannot be used to study quark matter with Fermi momenta larger than the cutoff. In the present work, an extension of the model to high temperatures and densities recently proposed by Casalbuoni, Gatto, Nardulli, and Ruggieri is used in connection with an implicit regularization scheme. This is done by making use of scaling relations of the divergent one-loop integrals that relate these integrals at different energy-momentum scales. Fixing the pion decay constant at the chiral symmetry breaking scale in the vacuum, the scaling relations predict a running coupling constant that decreases as the regularization scale increases, implementing in a schematic way the property of asymptotic freedom of quantum chromodynamics. If the regularization scale is allowed to increase with density and temperature, the coupling will decrease with density and temperature, extending in this way the applicability of the model to high densities and temperatures. These results are obtained without specifying an explicit regularization. As an illustration of the formalism, numerical results are obtained for the finite density and finite temperature quark condensate and applied to the problem of color superconductivity at high quark densities and finite temperature.
Resumo:
This work is concerned with the computation of incompressible axisymmetric and fall three-dimensional free-surface flows. In particular, the circular-hydraulic jump is simulated and compared with approximate analytic solutions. However, the principal thrust of this paper is to provide a real problem as a test bed for comparing the many existing convective approximations. Their performance is compared; SMART, HLPA and VONOS emerge as acceptable upwinding methods for this problem. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
This paper presents numerical simulations of incompressible fluid flows in the presence of a magnetic field at low magnetic Reynolds number. The equations governing the flow are the Navier-Stokes equations of fluid motion coupled with Maxwell's equations of electromagnetics. The study of fluid flows under the influence of a magnetic field and with no free electric charges or electric fields is known as magnetohydrodynamics. The magnetohydrodynamics approximation is considered for the formulation of the non-dimensional problem and for the characterization of similarity parameters. A finite-difference technique is used to discretize the equations. In particular, an extension of the generalized Peaceman and Rachford alternating-direction implicit (ADI) scheme for simulating two-dimensional fluid flows is presented. The discretized conservation equations are solved in stream function-vorticity formulation. We compare the ADI and generalized ADI schemes, and show that the latter is more efficient in simulating low Reynolds number and magnetic Reynolds number problems. Numerical results demonstrating the applicability of this technique are also presented. The simulation of incompressible magneto hydrodynamic fluid flows is illustrated by numerical solution for two-dimensional cases. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Este trabalho abordou o resfriamento rápido com ar forçado de morango via simulação numérica. Para tanto, foi empregado o modelo matemático que descreve o processo de transferência de calor, com base na lei de Fourier, escrito em coordenadas esféricas e simplificado para descrever o processo unidimensional. A resolução da equação expressa pelo modelo matemático deu-se por meio da implementação de um algoritmo, fundamentado no esquema explícito do método numérico das diferenças finitas, executado no ambiente de computação científica MATLAB 6.1. A validação do modelo matemático foi realizada a partir da comparação de dados teóricos com dados obtidos num experimento, no qual morangos foram resfriados com ar forçado. Os resultados mostraram que esse tipo de investigação para a determinação do coeficiente de transferência de calor por convecção é promissora como ferramenta no suporte à decisão do uso ou desenvolvimento de equipamentos na área de resfriamento rápido de frutos esféricos com ar forçado.
Resumo:
The conventional power flow method is considered to be inadequate to obtain the maximum loading point because of the singularity of Jacobian matrix. Continuation methods are efficient tools for solving this kind of problem since different parameterization schemes can be used to avoid such ill-conditioning problems. This paper presents the details of new schemes for the parameterization step of the continuation power flow method. The new parameterization options are based on physical parameters, namely, the total power losses (real and reactive), the power at the slack bus (real or reactive), the reactive power at generation buses, and transmission line power losses (real and reactive). The simulation results obtained with the new approach for the IEEE test systems (14, 30, 57, and 118 buses) are presented and discussed in the companion paper. The results show that the characteristics of the conventional method are not only preserved but also improved.
Resumo:
New parameterization schemes have been proposed by the authors in Part I of this paper. In this part these new options for the parameterization of power flow equations are tested, namely, the total power losses (real and reactive), the power at the slack bus (real or reactive), the reactive power at generation buses, and the transmission line power losses (real and reactive). These different parameterization schemes can be used to obtain the maximum loading point without ill-conditioning problems, once the singularity of Jacobian matrix is avoided. The results obtained with the new approach for the IEEE test systems (14, 30, 57, and 118 buses) show that the characteristics of the conventional method are not only preserved but also improved. In addition, it is shown that the proposed method and the conventional one can be switched during the tracing of PV curves to determine, with few iterations, all points of the PV curve. Several tests were also carried out to compare the performance of the proposed parameterization schemes for the continuation power flow method with the use of both the secant and tangent predictors.