792 resultados para cloud-based computing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cooperative caching in mobile ad hoc networks aims at improving the efficiency of information access by reducing access latency and bandwidth usage. Cache replacement policy plays a vital role in improving the performance of a cache in a mobile node since it has limited memory. In this paper we propose a new key based cache replacement policy called E-LRU for cooperative caching in ad hoc networks. The proposed scheme for replacement considers the time interval between the recent references, size and consistency as key factors for replacement. Simulation study shows that the proposed replacement policy can significantly improve the cache performance in terms of cache hit ratio and query delay

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Speech signals are one of the most important means of communication among the human beings. In this paper, a comparative study of two feature extraction techniques are carried out for recognizing speaker independent spoken isolated words. First one is a hybrid approach with Linear Predictive Coding (LPC) and Artificial Neural Networks (ANN) and the second method uses a combination of Wavelet Packet Decomposition (WPD) and Artificial Neural Networks. Voice signals are sampled directly from the microphone and then they are processed using these two techniques for extracting the features. Words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. Training, testing and pattern recognition are performed using Artificial Neural Networks. Back propagation method is used to train the ANN. The proposed method is implemented for 50 speakers uttering 20 isolated words each. Both the methods produce good recognition accuracy. But Wavelet Packet Decomposition is found to be more suitable for recognizing speech because of its multi-resolution characteristics and efficient time frequency localizations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the design and development of a frame based approach for speech to sign language machine translation system in the domain of railways and banking. This work aims to utilize the capability of Artificial intelligence for the improvement of physically challenged, deaf-mute people. Our work concentrates on the sign language used by the deaf community of Indian subcontinent which is called Indian Sign Language (ISL). Input to the system is the clerk’s speech and the output of this system is a 3D virtual human character playing the signs for the uttered phrases. The system builds up 3D animation from pre-recorded motion capture data. Our work proposes to build a Malayalam to ISL

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On-line handwriting recognition has been a frontier area of research for the last few decades under the purview of pattern recognition. Word processing turns to be a vexing experience even if it is with the assistance of an alphanumeric keyboard in Indian languages. A natural solution for this problem is offered through online character recognition. There is abundant literature on the handwriting recognition of western, Chinese and Japanese scripts, but there are very few related to the recognition of Indic script such as Malayalam. This paper presents an efficient Online Handwritten character Recognition System for Malayalam Characters (OHR-M) using K-NN algorithm. It would help in recognizing Malayalam text entered using pen-like devices. A novel feature extraction method, a combination of time domain features and dynamic representation of writing direction along with its curvature is used for recognizing Malayalam characters. This writer independent system gives an excellent accuracy of 98.125% with recognition time of 15-30 milliseconds

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this work is to develop an Open Agent Architecture for Multilingual information retrieval from Relational Database. The query for information retrieval can be given in plain Hindi or Malayalam; two prominent regional languages of India. The system supports distributed processing of user requests through collaborating agents. Natural language processing techniques are used for meaning extraction from the plain query and information is given back to the user in his/ her native language. The system architecture is designed in a structured way so that it can be adapted to other regional languages of India

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cluster based protocols like LEACH were found best suited for routing in wireless sensor networks. In mobility centric environments some improvements were suggested in the basic scheme. LEACH-Mobile is one such protocol. The basic LEACH protocol is improved in the mobile scenario by ensuring whether a sensor node is able to communicate with its cluster head. Since all the nodes, including cluster head is moving it will be better to elect a node as cluster head which is having less mobility related to its neighbours. In this paper, LEACH-Mobile protocol has been enhanced based on a mobility metric “remoteness” for cluster head election. This ensures high success rate in data transfer between the cluster head and the collector nodes even though nodes are moving. We have simulated and compared our LEACH-Mobile-Enhanced protocol with LEACHMobile. Results show that inclusion of neighbouring node information improves the routing protocol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Content Based Image Retrieval is one of the prominent areas in Computer Vision and Image Processing. Recognition of handwritten characters has been a popular area of research for many years and still remains an open problem. The proposed system uses visual image queries for retrieving similar images from database of Malayalam handwritten characters. Local Binary Pattern (LBP) descriptors of the query images are extracted and those features are compared with the features of the images in database for retrieving desired characters. This system with local binary pattern gives excellent retrieval performance

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a Robust Content Based Video Retrieval (CBVR) system. This system retrieves similar videos based on a local feature descriptor called SURF (Speeded Up Robust Feature). The higher dimensionality of SURF like feature descriptors causes huge storage consumption during indexing of video information. To achieve a dimensionality reduction on the SURF feature descriptor, this system employs a stochastic dimensionality reduction method and thus provides a model data for the videos. On retrieval, the model data of the test clip is classified to its similar videos using a minimum distance classifier. The performance of this system is evaluated using two different minimum distance classifiers during the retrieval stage. The experimental analyses performed on the system shows that the system has a retrieval performance of 78%. This system also analyses the performance efficiency of the low dimensional SURF descriptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considerable research effort has been devoted in predicting the exon regions of genes. The binary indicator (BI), Electron ion interaction pseudo potential (EIIP), Filter method are some of the methods. All these methods make use of the period three behavior of the exon region. Even though the method suggested in this paper is similar to above mentioned methods , it introduces a set of sequences for mapping the nucleotides selected by applying genetic algorithm and found to be more promising

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Software systems are progressively being deployed in many facets of human life. The implication of the failure of such systems, has an assorted impact on its customers. The fundamental aspect that supports a software system, is focus on quality. Reliability describes the ability of the system to function under specified environment for a specified period of time and is used to objectively measure the quality. Evaluation of reliability of a computing system involves computation of hardware and software reliability. Most of the earlier works were given focus on software reliability with no consideration for hardware parts or vice versa. However, a complete estimation of reliability of a computing system requires these two elements to be considered together, and thus demands a combined approach. The present work focuses on this and presents a model for evaluating the reliability of a computing system. The method involves identifying the failure data for hardware components, software components and building a model based on it, to predict the reliability. To develop such a model, focus is given to the systems based on Open Source Software, since there is an increasing trend towards its use and only a few studies were reported on the modeling and measurement of the reliability of such products. The present work includes a thorough study on the role of Free and Open Source Software, evaluation of reliability growth models, and is trying to present an integrated model for the prediction of reliability of a computational system. The developed model has been compared with existing models and its usefulness of is being discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formal Concept Analysis is an unsupervised learning technique for conceptual clustering. We introduce the notion of iceberg concept lattices and show their use in Knowledge Discovery in Databases (KDD). Iceberg lattices are designed for analyzing very large databases. In particular they serve as a condensed representation of frequent patterns as known from association rule mining. In order to show the interplay between Formal Concept Analysis and association rule mining, we discuss the algorithm TITANIC. We show that iceberg concept lattices are a starting point for computing condensed sets of association rules without loss of information, and are a visualization method for the resulting rules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mit Hilfe der Vorhersage von Kontexten können z. B. Dienste innerhalb einer ubiquitären Umgebung proaktiv an die Bedürfnisse der Nutzer angepasst werden. Aus diesem Grund hat die Kontextvorhersage einen signifikanten Stellenwert innerhalb des ’ubiquitous computing’. Nach unserem besten Wissen, verwenden gängige Ansätze in der Kontextvorhersage ausschließlich die Kontexthistorie des Nutzers als Datenbasis, dessen Kontexte vorhersagt werden sollen. Im Falle, dass ein Nutzer unerwartet seine gewohnte Verhaltensweise ändert, enthält die Kontexthistorie des Nutzers keine geeigneten Informationen, um eine zuverlässige Kontextvorhersage zu gewährleisten. Daraus folgt, dass Vorhersageansätze, die ausschließlich die Kontexthistorie des Nutzers verwenden, dessen Kontexte vorhergesagt werden sollen, fehlschlagen könnten. Um die Lücke der fehlenden Kontextinformationen in der Kontexthistorie des Nutzers zu schließen, führen wir den Ansatz zur kollaborativen Kontextvorhersage (CCP) ein. Dabei nutzt CCP bestehende direkte und indirekte Relationen, die zwischen den Kontexthistorien der verschiedenen Nutzer existieren können, aus. CCP basiert auf der Singulärwertzerlegung höherer Ordnung, die bereits erfolgreich in bestehenden Empfehlungssystemen eingesetzt wurde. Um Aussagen über die Vorhersagegenauigkeit des CCP Ansatzes treffen zu können, wird dieser in drei verschiedenen Experimenten evaluiert. Die erzielten Vorhersagegenauigkeiten werden mit denen von drei bekannten Kontextvorhersageansätzen, dem ’Alignment’ Ansatz, dem ’StatePredictor’ und dem ’ActiveLeZi’ Vorhersageansatz, verglichen. In allen drei Experimenten werden als Evaluationsbasis kollaborative Datensätze verwendet. Anschließend wird der CCP Ansatz auf einen realen kollaborativen Anwendungsfall, den proaktiven Schutz von Fußgängern, angewendet. Dabei werden durch die Verwendung der kollaborativen Kontextvorhersage Fußgänger frühzeitig erkannt, die potentiell Gefahr laufen, mit einem sich nähernden Auto zu kollidieren. Als kollaborative Datenbasis werden reale Bewegungskontexte der Fußgänger verwendet. Die Bewegungskontexte werden mittels Smartphones, welche die Fußgänger in ihrer Hosentasche tragen, gesammelt. Aus dem Grund, dass Kontextvorhersageansätze in erster Linie personenbezogene Kontexte wie z.B. Standortdaten oder Verhaltensmuster der Nutzer als Datenbasis zur Vorhersage verwenden, werden rechtliche Evaluationskriterien aus dem Recht des Nutzers auf informationelle Selbstbestimmung abgeleitet. Basierend auf den abgeleiteten Evaluationskriterien, werden der CCP Ansatz und weitere bekannte kontextvorhersagende Ansätze bezüglich ihrer Rechtsverträglichkeit untersucht. Die Evaluationsergebnisse zeigen die rechtliche Kompatibilität der untersuchten Vorhersageansätze bezüglich des Rechtes des Nutzers auf informationelle Selbstbestimmung auf. Zum Schluss wird in der Dissertation ein Ansatz für die verteilte und kollaborative Vorhersage von Kontexten vorgestellt. Mit Hilfe des Ansatzes wird eine Möglichkeit aufgezeigt, um den identifizierten rechtlichen Probleme, die bei der Vorhersage von Kontexten und besonders bei der kollaborativen Vorhersage von Kontexten, entgegenzuwirken.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

General-purpose computing devices allow us to (1) customize computation after fabrication and (2) conserve area by reusing expensive active circuitry for different functions in time. We define RP-space, a restricted domain of the general-purpose architectural space focussed on reconfigurable computing architectures. Two dominant features differentiate reconfigurable from special-purpose architectures and account for most of the area overhead associated with RP devices: (1) instructions which tell the device how to behave, and (2) flexible interconnect which supports task dependent dataflow between operations. We can characterize RP-space by the allocation and structure of these resources and compare the efficiencies of architectural points across broad application characteristics. Conventional FPGAs fall at one extreme end of this space and their efficiency ranges over two orders of magnitude across the space of application characteristics. Understanding RP-space and its consequences allows us to pick the best architecture for a task and to search for more robust design points in the space. Our DPGA, a fine- grained computing device which adds small, on-chip instruction memories to FPGAs is one such design point. For typical logic applications and finite- state machines, a DPGA can implement tasks in one-third the area of a traditional FPGA. TSFPGA, a variant of the DPGA which focuses on heavily time-switched interconnect, achieves circuit densities close to the DPGA, while reducing typical physical mapping times from hours to seconds. Rigid, fabrication-time organization of instruction resources significantly narrows the range of efficiency for conventional architectures. To avoid this performance brittleness, we developed MATRIX, the first architecture to defer the binding of instruction resources until run-time, allowing the application to organize resources according to its needs. Our focus MATRIX design point is based on an array of 8-bit ALU and register-file building blocks interconnected via a byte-wide network. With today's silicon, a single chip MATRIX array can deliver over 10 Gop/s (8-bit ops). On sample image processing tasks, we show that MATRIX yields 10-20x the computational density of conventional processors. Understanding the cost structure of RP-space helps us identify these intermediate architectural points and may provide useful insight more broadly in guiding our continual search for robust and efficient general-purpose computing structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the key role played by partial evaluation in the Supercomputing Toolkit, a parallel computing system for scientific applications that effectively exploits the vast amount of parallelism exposed by partial evaluation. The Supercomputing Toolkit parallel processor and its associated partial evaluation-based compiler have been used extensively by scientists at MIT, and have made possible recent results in astrophysics showing that the motion of the planets in our solar system is chaotically unstable.