828 resultados para cloud computing resources
Resumo:
Time Series Analysis of multispectral satellite data offers an innovative way to extract valuable information of our changing planet. This is now a real option for scientists thanks to data availability as well as innovative cloud-computing platforms, such as Google Earth Engine. The integration of different missions would mitigate known issues in multispectral time series construction, such as gaps due to clouds or other atmospheric effects. With this purpose, harmonization among Landsat-like missions is possible through statistical analysis. This research offers an overview of the different instruments from Landsat and Sentinel missions (TM, ETM, OLI, OLI-2 and MSI sensors) and products levels (Collection-2 Level-1 and Surface Reflectance for Landsat and Level-1C and Level-2A for Sentinel-2). Moreover, a cross-sensors comparison was performed to assess the interoperability of the sensors on-board Landsat and Sentinel-2 constellations, having in mind a possible combined use for time series analysis. Firstly, more than 20,000 pairs of images almost simultaneously acquired all over Europe were selected over a period of several years. The study performed a cross-comparison analysis on these data, and provided an assessment of the calibration coefficients that can be used to minimize differences in the combined use. Four of the most popular vegetation indexes were selected for the study: NDVI, EVI, SAVI and NDMI. As a result, it is possible to reconstruct a longer and denser harmonized time series since 1984, useful for vegetation monitoring purposes. Secondly, the spectral characteristics of the recent Landsat-9 mission were assessed for a combined use with Landsat-8 and Sentinel-2. A cross-sensor analysis of common bands of more than 3,000 almost simultaneous acquisitions verified a high consistency between datasets. The most relevant discrepancy has been observed in the blue and SWIRS bands, often used in vegetation and water related studies. This analysis was supported with spectroradiometer ground measurements.
Resumo:
LHC experiments produce an enormous amount of data, estimated of the order of a few PetaBytes per year. Data management takes place using the Worldwide LHC Computing Grid (WLCG) grid infrastructure, both for storage and processing operations. However, in recent years, many more resources are available on High Performance Computing (HPC) farms, which generally have many computing nodes with a high number of processors. Large collaborations are working to use these resources in the most efficient way, compatibly with the constraints imposed by computing models (data distributed on the Grid, authentication, software dependencies, etc.). The aim of this thesis project is to develop a software framework that allows users to process a typical data analysis workflow of the ATLAS experiment on HPC systems. The developed analysis framework shall be deployed on the computing resources of the Open Physics Hub project and on the CINECA Marconi100 cluster, in view of the switch-on of the Leonardo supercomputer, foreseen in 2023.
Resumo:
Negli ultimi anni la necessità di processare e mantenere dati di qualsiasi natura è aumentata considerevolmente, in aggiunta a questo, l’obsolescenza del modello centralizzato ha contribuito alla sempre più frequente adozione del modello distribuito. Inevitabile dunque l’aumento di traffico che attraversa i nodi appartenenti alle infrastrutture, un traffico sempre più in aumento e che con l’avvento dell’IoT, dei Big Data, del Cloud Computing, del Serverless Computing etc., ha raggiunto picchi elevatissimi. Basti pensare che se prima i dati erano contenuti in loco, oggi non è assurdo pensare che l’archiviazione dei propri dati sia completamente affidata a terzi. Così come cresce, quindi, il traffico che attraversa i nodi facenti parte di un’infrastruttura, cresce la necessità che questo traffico sia filtrato e gestito dai nodi stessi. L’obbiettivo di questa tesi è quello di estendere un Message-oriented Middleware, in grado di garantire diverse qualità di servizio per la consegna di messaggi, in modo da accelerarne la fase di routing verso i nodi destinazione. L’estensione consiste nell’aggiungere al Message-oriented Middleware, precedentemente implementato, la funzione di intercettare i pacchetti in arrivo (che nel caso del middleware in questione possono rappresentare la propagazione di eventi) e redirigerli verso un nuovo nodo in base ad alcuni parametri. Il Message-oriented Middleware oggetto di tesi sarà considerato il message broker di un modello pub/sub, pertanto la redirezione deve avvenire con tempi molto bassi di latenza e, a tal proposito, deve avvenire senza l’uscita dal kernel space del sistema operativo. Per questo motivo si è deciso di utilizzare eBPF, in particolare il modulo XDP, che permette di scrivere programmi che eseguono all’interno del kernel.
Resumo:
Industry 4.0 refers to the 4th industrial revolution and at its bases, we can see the digitalization and the automation of the assembly line. The whole production process has improved and evolved thanks to the advances made in networking, and AI studies, which include of course machine learning, cloud computing, IoT, and other technologies that are finally being implemented into the industrial scenario. All these technologies have in common a need for faster, more secure, robust, and reliable communication. One of the many solutions for these demands is the use of mobile communication technologies in the industrial environment, but which technology is better suited for these demands? Of course, the answer isn’t as simple as it seems. The 4th industrial revolution has a never seen incomparable potential with respect to the previous ones, every factory, enterprise, or company have different network demands, and even in each of these infrastructures, the demands may diversify by sector, or by application. For example, in the health care industry, there may be e a need for increased bandwidth for the analysis of high-definition videos or, faster speeds in order to have analytics occur in real-time, and again another application might be higher security and reliability to protect patients’ data. As seen above, choosing the right technology for the right environment and application, considers many things, and the ones just stated are but a speck of dust with respect to the overall picture. In this thesis, we will investigate a comparison between the use of two of the available technologies in use for the industrial environment: Wi-Fi 6 and 5G Private Networks in the specific case of a steel factory.
Resumo:
Con il lancio di nuove applicazioni tecnologiche come l'Internet of Things, Big Data, Cloud computing e tecnologie mobili che stanno accelerando in maniera spropositata la velocità di cambiamento, i comportamenti, le abitudini e i modi di vivere sono completamente mutati nel favorire un mondo di tecnologie digitali che agevolino le operazioni quotidiane. Questi progressi stanno velocemente cambiando il modo in cui le aziende fanno business, con grandi ripercussioni in tutto quello che è il contesto aziendale, ma non solo. L’avvento della Digital Transformation ha incrementato questi fenomeni e la si potrebbe definire come causa scatenante di tutti i mutamenti che stiamo vivendo. La velocità e l’intensità del cambiamento ha effetti disruptive rispetto al passato, colpendo numerosi settori economici ed abitudini dei consumatori. L’obiettivo di questo elaborato è di analizzare la trasformazione digitale applicata al caso dell’azienda Alfa, comprendendone le potenzialità. In particolare, si vogliono studiare i principali risvolti portati da tale innovazione, le più importanti iniziative adottate in merito alle nuove tecnologie implementate e i benefici che queste portano in campo strategico, di business e cultura aziendale.
Resumo:
Questo lavoro di tesi è incentrato sullo sviluppo di una soluzione applicativa nell'ambito dell'integrazione di sistemi software basati su tecnologie considerate legacy. In particolar modo è stato studiata una soluzione integrativa per il popolare ERP gestionale Sap su piattaforma Cloud OpenShift. La soluzione è articolata su diversi livelli basati sull'architettura proposta da Gartner nell'ambito della Digital Integration Hub. È stata sviluppata tramite tecnologie open source leader nel settore e tecnologie cloud avanzate.
Resumo:
The usage of Optical Character Recognition’s (OCR, systems is a widely spread technology into the world of Computer Vision and Machine Learning. It is a topic that interest many field, for example the automotive, where becomes a specialized task known as License Plate Recognition, useful for many application from the automation of toll road to intelligent payments. However, OCR systems need to be very accurate and generalizable in order to be able to extract the text of license plates under high variable conditions, from the type of camera used for acquisition to light changes. Such variables compromise the quality of digitalized real scenes causing the presence of noise and degradation of various type, which can be minimized with the application of modern approaches for image iper resolution and noise reduction. Oneclass of them is known as Generative Neural Networks, which are very strong ally for the solution of this popular problem.
Resumo:
Empowered by virtualisation technology, cloud infrastructures enable the construction of flexi- ble and elastic computing environments, providing an opportunity for energy and resource cost optimisation while enhancing system availability and achieving high performance. A crucial re- quirement for effective consolidation is the ability to efficiently utilise system resources for high- availability computing and energy-efficiency optimisation to reduce operational costs and carbon footprints in the environment. Additionally, failures in highly networked computing systems can negatively impact system performance substantially, prohibiting the system from achieving its initial objectives. In this paper, we propose algorithms to dynamically construct and readjust vir- tual clusters to enable the execution of users’ jobs. Allied with an energy optimising mechanism to detect and mitigate energy inefficiencies, our decision-making algorithms leverage virtuali- sation tools to provide proactive fault-tolerance and energy-efficiency to virtual clusters. We conducted simulations by injecting random synthetic jobs and jobs using the latest version of the Google cloud tracelogs. The results indicate that our strategy improves the work per Joule ratio by approximately 12.9% and the working efficiency by almost 15.9% compared with other state-of-the-art algorithms.
Resumo:
Current trends in broadband mobile networks are addressed towards the placement of different capabilities at the edge of the mobile network in a centralised way. On one hand, the split of the eNB between baseband processing units and remote radio headers makes it possible to process some of the protocols in centralised premises, likely with virtualised resources. On the other hand, mobile edge computing makes use of processing and storage capabilities close to the air interface in order to deploy optimised services with minimum delay. The confluence of both trends is a hot topic in the definition of future 5G networks. The full centralisation of both technologies in cloud data centres imposes stringent requirements to the fronthaul connections in terms of throughput and latency. Therefore, all those cells with limited network access would not be able to offer these types of services. This paper proposes a solution for these cases, based on the placement of processing and storage capabilities close to the remote units, which is especially well suited for the deployment of clusters of small cells. The proposed cloud-enabled small cells include a highly efficient microserver with a limited set of virtualised resources offered to the cluster of small cells. As a result, a light data centre is created and commonly used for deploying centralised eNB and mobile edge computing functionalities. The paper covers the proposed architecture, with special focus on the integration of both aspects, and possible scenarios of application.
Resumo:
A first-rate e-Health system saves lives, provides better patient care, allows complex but useful epidemiologic analysis and saves money. However, there may also be concerns about the costs and complexities associated with e-health implementation, and the need to solve issues about the energy footprint of the high-demanding computing facilities. This paper proposes a novel and evolved computing paradigm that: (i) provides the required computing and sensing resources; (ii) allows the population-wide diffusion; (iii) exploits the storage, communication and computing services provided by the Cloud; (iv) tackles the energy-optimization issue as a first-class requirement, taking it into account during the whole development cycle. The novel computing concept and the multi-layer top-down energy-optimization methodology obtain promising results in a realistic scenario for cardiovascular tracking and analysis, making the Home Assisted Living a reality.
Resumo:
Recent technological advancements have played a key role in seamlessly integrating cloud, edge, and Internet of Things (IoT) technologies, giving rise to the Cloud-to-Thing Continuum paradigm. This cloud model connects many heterogeneous resources that generate a large amount of data and collaborate to deliver next-generation services. While it has the potential to reshape several application domains, the number of connected entities remarkably broadens the security attack surface. One of the main problems is the lack of security measures to adapt to the dynamic and evolving conditions of the Cloud-To-Thing Continuum. To address this challenge, this dissertation proposes novel adaptable security mechanisms. Adaptable security is the capability of security controls, systems, and protocols to dynamically adjust to changing conditions and scenarios. However, since the design and development of novel security mechanisms can be explored from different perspectives and levels, we place our attention on threat modeling and access control. The contributions of the thesis can be summarized as follows. First, we introduce a model-based methodology that secures the design of edge and cyber-physical systems. This solution identifies threats, security controls, and moving target defense techniques based on system features. Then, we focus on access control management. Since access control policies are subject to modifications, we evaluate how they can be efficiently shared among distributed areas, highlighting the effectiveness of distributed ledger technologies. Furthermore, we propose a risk-based authorization middleware, adjusting permissions based on real-time data, and a federated learning framework that enhances trustworthiness by weighting each client's contributions according to the quality of their partial models. Finally, since authorization revocation is another critical concern, we present an efficient revocation scheme for verifiable credentials in IoT networks, featuring decentralization, demanding minimum storage and computing capabilities. All the mechanisms have been evaluated in different conditions, proving their adaptability to the Cloud-to-Thing Continuum landscape.
Resumo:
The idea of Grid Computing originated in the nineties and found its concrete applications in contexts like the SETI@home project where a lot of computers (offered by volunteers) cooperated, performing distributed computations, inside the Grid environment analyzing radio signals trying to find extraterrestrial life. The Grid was composed of traditional personal computers but, with the emergence of the first mobile devices like Personal Digital Assistants (PDAs), researchers started theorizing the inclusion of mobile devices into Grid Computing; although impressive theoretical work was done, the idea was discarded due to the limitations (mainly technological) of mobile devices available at the time. Decades have passed, and now mobile devices are extremely more performant and numerous than before, leaving a great amount of resources available on mobile devices, such as smartphones and tablets, untapped. Here we propose a solution for performing distributed computations over a Grid Computing environment that utilizes both desktop and mobile devices, exploiting the resources from day-to-day mobile users that alternatively would end up unused. The work starts with an introduction on what Grid Computing is, the evolution of mobile devices, the idea of integrating such devices into the Grid and how to convince device owners to participate in the Grid. Then, the tone becomes more technical, starting with an explanation on how Grid Computing actually works, followed by the technical challenges of integrating mobile devices into the Grid. Next, the model, which constitutes the solution offered by this study, is explained, followed by a chapter regarding the realization of a prototype that proves the feasibility of distributed computations over a Grid composed by both mobile and desktop devices. To conclude future developments and ideas to improve this project are presented.
Resumo:
We present a scheme which offers a significant reduction in the resources required to implement linear optics quantum computing. The scheme is a variation of the proposal of Knill, Laflamme and Milburn, and makes use of an incremental approach to the error encoding to boost probability of success.
Resumo:
The real Cloud and Ubiquitous Manufacturing systems require effectiveness and permanent availability of resources, their capacity and scalability. One of the most important problems for applications management over cloud based platforms, which are expected to support efficient scalability and resources coordination following SaaS implementation model, is their interoperability. Even application dashboards need to easily incorporate those new applications, their interoperability still remains a big problem to override. So, the possibility to expand these dashboards with efficiently integrated communicational cloud based services (cloudlets) represents a relevant added value as well as contributes to solving the interoperability problem. Following the architecture for integration of enriched existing cloud services, as instances of manufacturing resources, this paper: a) proposes a cloud based web platform to support dashboard integrating communicational services, and b) describe an experimentation to sustain the theory that the effective and efficient interoperability, especially in dynamic environments, could be achieved only with human intervention.
Resumo:
3D laser scanning is becoming a standard technology to generate building models of a facility's as-is condition. Since most constructions are constructed upon planar surfaces, recognition of them paves the way for automation of generating building models. This paper introduces a new logarithmically proportional objective function that can be used in both heuristic and metaheuristic (MH) algorithms to discover planar surfaces in a point cloud without exploiting any prior knowledge about those surfaces. It can also adopt itself to the structural density of a scanned construction. In this paper, a metaheuristic method, genetic algorithm (GA), is used to test this introduced objective function on a synthetic point cloud. The results obtained show the proposed method is capable to find all plane configurations of planar surfaces (with a wide variety of sizes) in the point cloud with a minor distance to the actual configurations. © 2014 IEEE.