985 resultados para calc-alkaline granite
Resumo:
Cambisols are the major soil type in Portugal. The yield of annual crops in these soils is generally poor, and the situation is aggravated in wet winters. In the south of Portugal, manganese toxicity has been identified as the major cause of poor growth and leaching as the main reason for the negative effect of rainfall observed in Cambisols derived from granite Manganese toxicity also appears to be present in the Cambisols in other regions of Portugal. Manganese toxicity is cross-related to the magnesium concentration, either in the soil solution or in plant shoots. Therefore soil amendment using dolomitic limestone is needed to overcome the problem. Current soil test methods are unable to predict the level of Mn toxicity. However, new approach using the extraction of soil solution is proposed, although further work is needed to fully implement the method.
High alkaline phosphatase activity in phosphate replete waters: The case of two macrotidal estuaries
Resumo:
The occurrence of alkaline phosphatase activity (APA) that hydrolyses organic phosphorus into phosphate (PO4) is commonly related to PO4 deficiency of oceanic, coastal and fresh waters. APA is almost never investigated in PO4-rich estuaries, since very low activities are expected to occur. As a consequence, microbial mineralization of organic phosphorus into PO4 has often been ignored in estuaries. In this study, we examined the importance of potential APA and the associated microbial dynamics in two estuaries, the Aulne and the Elorn (Northwestern France), presenting two different levels of PO4 concentrations. Unexpected high potential APA was observed in both estuaries. Values ranged from 50 to 506 nmol L−1 h−1, which range is usually found in very phosphorus-limited environments. High potential APA values were observed in the oligohaline zone (salinity 5–15) in spring and summer, corresponding to a PO4 peak and a maximum bacterial production of particle-attached bacteria. In all cases, high potential APA was associated with high suspended particulate matter and total particulate phosphorus. The low contribution of the 0.2–1 μm fraction to total APA, the strong correlation between particulate APA and bacterial biomass, and the close relationship between the production of particle-attached bacteria and APA, suggested that high potential APA is mainly due to particle-attached bacteria. These results suggest that the microbial mineralization of organic phosphorus may contribute to an estuarine PO4 production in spring and summer besides physicochemical processes.
Resumo:
Background: Management of hyperbilirubinemia remains a challenge for neonatal medicine because of the risk of neurological complications related to the toxicity of severe hyperbilirubinemia. Objectives: The purpose of this study was to examine the validity of cord blood alkaline phosphatase level for predicting neonatal hyperbilirubinemia. Patients and Methods: Between October and December 2013 a total of 102 healthy term infants born to healthy mothers were studied. Cord blood samples were collected for measurement of alkaline Phosphatase levels immediately after birth. Neonates were followed-up for the emergence of jaundice. Newborns with clinical jaundice were recalled and serum bilirubin levels measured. Appropriate treatment based on serum bilirubin level was performed. Alkaline phosphatase levels between the non-jaundiced and jaundiced treated neonates were compared. Results: The incidence of severe jaundice that required treatment among followed-up neonates was 9.8%. The mean alkaline phosphatase level was 309.09 ± 82.51 IU/L in the non-jaundiced group and 367.80 ± 73.82 IU/L in the severely jaundiced group (P = 0.040). The cutoff value of 314 IU/L was associated with sensitivity 80% and specificity 63% for predicting neonatal hyperbilirubinemia requiring treatment. Conclusions: The cord blood alkaline phosphatase level can be used as a predictor of severe neonatal jaundice.
Resumo:
Electrocatalysts play a significant role in the processes of electrochemical energy conversion. This thesis focuses on the preparation of carbon-supported nanomaterials and their application as electrocatalysts for alkaline water electrocatalysis and fuel cell. A general synthetic route was developed, i.e., species intercalate into carbon layers of graphite forming graphite intercalation compound, followed by dispersion producing graphenide solution, which then as reduction agent reacts with different metal sources generating the final materials. The first metal precursor used was non-noble metal iron salt, which generated iron (oxide) nanoparticles finely dispersed on carbon layers in the final composite materials. Meanwhile, graphite starting materials differing in carbon layer size were utilized, which would diversify corresponding graphenide solutions, and further produce various nanomaterials. The characterization results showed that iron (oxide) nanoparticles varying in size were obtained, and the size was determined by the starting graphite material. It was found that they were electrocatalytically active for oxygen reactions. In particular, the one with small iron (oxide) nanoparticles showed excellent electrocatalytic activity for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Afterwards, the metal precursor was tuned from non-noble metal salt to noble metal salt. It was confirmed that carbon-supported Rh, Pt, and RhPt (oxide) nanoparticle composite materials were also successfully obtained from the reaction between graphenide solution and corresponding noble metal precursor. The electrochemical measurements showed that the prepared noble metal-based nanomaterials were quite effective for hydrogen evolution reaction (HER) electrocatalysis, and the Rh sample could also display excellent electrocatalytic property towards OER. Moreover, by this synthetic approach carbon-supported noble metal Pt and non-noble metal nickel (Ni) composite material was also prepared. Therefore, the utilization efficiency of noble metal could be improved. The prepared NiPt sample displayed a property close to benchmark HER electrocatalyst.
Resumo:
Xanthomonas citri subsp. citri (X. citri) is the causative agent of the citrus canker, a disease that affects several citrus plants in Brazil and across the world. Although many studies have demonstrated the importance of genes for infection and pathogenesis in this bacterium, there are no data related to phosphate uptake and assimilation pathways. To identify the proteins that are involved in the phosphate response, we performed a proteomic analysis of X. citri extracts after growth in three culture media with different phosphate concentrations. Using mass spectrometry and bioinformatics analysis, we showed that X. citri conserved orthologous genes from Pho regulon in Escherichia coli, including the two-component system PhoR/PhoB, ATP binding cassette (ABC transporter) Pst for phosphate uptake, and the alkaline phosphatase PhoA. Analysis performed under phosphate starvation provided evidence of the relevance of the Pst system for phosphate uptake, as well as both periplasmic binding proteins, PhoX and PstS, which were formed in high abundance. The results from this study are the first evidence of the Pho regulon activation in X. citri and bring new insights for studies related to the bacterial metabolism and physiology. Biological significance Using proteomics and bioinformatics analysis we showed for the first time that the phytopathogenic bacterium X. citri conserves a set of proteins that belong to the Pho regulon, which are induced during phosphate starvation. The most relevant in terms of conservation and up-regulation were the periplasmic-binding proteins PstS and PhoX from the ABC transporter PstSBAC for phosphate, the two-component system composed by PhoR/PhoB and the alkaline phosphatase PhoA.
Resumo:
To describe the prevalence of hepatic steatosis and to assess the performance of biochemical, anthropometric and body composition indicators for hepatic steatosis in obese teenagers. Cross-sectional study including 79 adolecents aged from ten to 18 years old. Hepatic steatosis was diagnosed by abdominal ultrasound in case of moderate or intense hepatorenal contrast and/or a difference in the histogram ≥7 on the right kidney cortex. The insulin resistance was determined by the Homeostasis Model Assessment-Insulin Resistance (HOMA-IR) index for values >3.16. Anthropometric and body composition indicators consisted of body mass index, body fat percentage, abdominal circumference and subcutaneous fat. Fasting glycemia and insulin, lipid profile and hepatic enzymes, such as aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase and alkaline phosphatase, were also evaluated. In order to assess the performance of these indicators in the diagnosis of hepatic steatosis in teenagers, a ROC curve analysis was applied. Hepatic steatosis was found in 20% of the patients and insulin resistance, in 29%. Gamma-glutamyltransferase and HOMA-IR were good indicators for predicting hepatic steatosis, with a cutoff of 1.06 times above the reference value for gamma-glutamyltransferase and 3.28 times for the HOMA-IR. The anthropometric indicators, the body fat percentage, the lipid profile, the glycemia and the aspartate aminotransferase did not present significant associations. Patients with high gamma-glutamyltransferase level and/or HOMA-IR should be submitted to abdominal ultrasound examination due to the increased chance of having hepatic steatosis.
Resumo:
Rubus niveus Thunb. plant belongs to Rosaceae family and have been used traditionally to treat wounds, burns, inflammation, dysentery, diarrhea and for curing excessive bleeding during menstrual cycle. The present study was undertaken to investigate the in vivo genotoxicity of Rubus niveus aerial parts extract and its possible chemoprotection on doxorubicin (DXR)-induced DNA damage. In parallel, the main phytochemicals constituents in the extract were determined. The animals were exposed to the extract for 24 and 48h, and the doses selected were 500, 1000 and 2000mg/kg b.w. administered by gavage alone or prior to DXR (30mg/kg b.w.) administered by intraperitoneal injection. The endpoints analyzed were DNA damage in bone marrow and peripheral blood cells assessed by the alkaline alkaline (pH>13) comet assay and bone marrow micronucleus test. The results of chemical analysis of the extract showed the presence of tormentic acid, stigmasterol, quercitinglucoronide (miquelianin) and niga-ichigoside F1 as main compounds. Both cytogenetic endpoints analyzed showed that there were no statistically significant differences (p>0.05) between the negative control and the treated groups with the two higher doses of Rubus niveus extract alone, demonstrating absence of genotoxic and mutagenic effects. Aneugenic/clastogenic effect was observed only at 2000mg/kg dose. On the other hand, in the both assays and all tested doses were observed a significant reduction of DNA damage and chromosomal aberrations in all groups co-treated with DXR and extract compared to those which received only DXR. These results indicate that Rubus niveus aerial parts extract did not revealed any genotoxic effect, but presented some aneugenic/clastogenic effect at higher dose; and suggest that it could be a potential adjuvant against development of second malignant neoplasms caused by the cancer chemotherapic DXR.
Resumo:
An efficient synthesis of the marine metabolite 3-bromoverongiaquinol (1) and the first total synthesis of 5-monobromocavernicolin (2), both isolated from the marine sponge Aplysina cavernicola, have been described based on the 1,2 addition of the lithium enolate of N,O-bistrimethylsilylacetamide (BSA, 4) to 1,4-benzoquinone (3). Bromination and purification of the crude product on silica gel chromatography provided 3-bromoverongiaquinol (1) in 50% overall yield. Under alkaline conditions, the crude product of the bromination reaction was converted to 5-monobromocavernicolin (2) in 20% yield which was also obtained in 13% yield (25% yield based on recovered starting material) from 3-bromoverongiaquinol (1).
Resumo:
A rapid and low cost method to determine Cr(VI) in soils based upon alkaline metal extraction at room temperature is proposed as a semi-quantitative procedure to be performed in the field. A color comparison with standards with contents of Cr(VI) in the range of 10 to 150 mg kg-1 was used throughout. For the different types of soils studied, more than 75% of the fortified soluble Cr(VI) were recovered for all levels of spike tested for both the proposed and standard methods. Recoveries of 83 and 99% were obtained for the proposed and the standard methods, respectively, taking into account the analysis of a heavily contaminated soil sample.
Resumo:
A wild strain of Streptococcus thermophilus isolated from pasteurized milk was evaluated using an experimental model with respect to its adhesion onto stainless steel surfaces and its behaviour when submitted to cleansing and sanification. In milk, the adhesion of the microorganism on to stainless steel surfaces was studied after 6 hours of contact at 45°C with agitation, and after a cleansing process involving cleaning stages with alkaline and acid detergents followed by sanification, in order to evaluate the resistance of the adhered cells. The microorganism adhered to stainless steel surfaces producing a cell load of 10(4) CFU/cm². After alkaline cleansing, no adhered cells were detected but 6 CFU/cm² were still detected on the surfaces after acid cleansing. Cleansing, followed by sanification with sodium hypochlorite, was sufficient to reduce the load of wild S. thermophilus on the stainless steel surfaces to non-detectable levels. The experimental model proved adequate for the study indicating that the wild microorganism S. thermophilus produces biofilms on stainless steel surfaces. Alkaline cleansing remove more that 99.9% of the adhered cells. The few cells adhered on the surface are removed by acid cleansing demonstrating the need to use different steps and types of detergent for efficient cleansing. The best results for the removal of these biofilms are obtained by using alkaline cleansing followed by acid cleaning, this procedure being more efficient when complemented by sanification with sodium hypochlorite.