993 resultados para bone morphology
Resumo:
The barrier effect and the performance of an organic–inorganic hybrid (OIH) sol–gel coating are highlydependent on the coating deposition method as well as processing conditions. In this work, studies onthe influence of experimental parameters using the dip coating method were performed. Factors suchas residence time (Rt), a curing step between each dip step and the number of layers of sol–gel OIHfilms deposited on HDGS to prevent corrosion in highly alkaline environments were studied. These OIHcoatings were obtained using a functionalized siloxane, 3-isociantepropyltriethoxysilane that reactedwith a diamino-functionalized oligopolymer (Jeffamine®D-230). The barrier efficiency of OIH coatings insimulated concrete pore solutions (SCPS) was assessed in the first moments of contact, by electrochemicalimpedance spectroscopy and potentiodynamic methods. The durability and stability of the OIH coatings inSCPS was monitored during eight days by macrocell current density. The morphological characterizationof the surface was performed by scanning electronic microscopy before and after exposure to SCPS.Glow discharge optical emission spectroscopy was used to obtain quantitative composition profiles toinvestigate the thickness of the OIH coatings as a function of the number of layers deposited and theinfluence of the Rt in the coating thickness.
Resumo:
ABSTRACT Nodal glands are found in one third of the Polygalaceae genera and have valuable taxonomic, ecological and evolutionary significance. In Brazil, they occur in five of the eleven genera already registered. However, there is still a controversy regarding the origin of these structures. The objective of this study was to characterize the morphology and the origin of nodal glands inCaamembeca spectabilis, in order to increase the structural and functional knowledge of these glands in the genera. Samples of nodal regions were collected, fixed and processed according to the methods of light microscopy and electron scanning. Ants were observed and identified along the stem axis. The glucose in exudate allows us to classify these glands as extrafloral nectaries. They are located in pairs on the nodal region. However, its origin is in the leaf trace. In the longitudinal section, the nectaries were present in the apex of cells with anticlinal walls impregnated with suberin, which represents the first record for the family. In this region there is also the formation of a hole by lysis. The secretory tissue is surrounded by phloem. Xylem vessels were observed only on the basis of the nectary, where there are also idioblasts with crystals in druse type. We have studied the ontogeny of the glands nodal in Caamembeca spectabilis and unveiled that these glands are linked to the leaves as stipular nectaries. In addition, the new findings presented here may add support for the understanding of morphology and anatomy of nodal glands in Caamembeca.
Resumo:
ABSTRACT Macrobrachium carcinus is a Brazilian native prawn with recognized potential for use in aquaculture activities. The aim of this study was to describe and illustrate in detail the morphology of the M. carcinus foregut. The foregut comprises the mouth, esophagus and stomach. It is lined by a simple cylindrical epithelium overlain by chitinous cuticle. The cardiac chamber is well supplied with muscles and lined with chitin thickened in places to form a complex, articulating set of ossicles. The ossicles and setae inside the cardiac chamber seem to direct the food movement through the cardiac chamber and sort the food according to particle size as digestion takes place. Twenty-one basic ossicles were observed in the stomach ofM. carcinus and are divided into seven categories, reflecting their presumed functional roles. The significance of these morphological features is discussed in terms of its implication in feeding management that can support future commercial farms of this important fishery resource.
Resumo:
Gold nanorods (AuNRs) have emerged as an exceptional nanotool for a myriad of applications ranging from cancer therapy to tissue engineering. However, their surface modification with biocompatible and stabilizing biomaterials is crucial to allow their use in a biological environment. Herein, low-acyl gellan gum (GG) was used to coat AuNRs surface, taking advantage of its stabilizing, biocompatible and gelling features. The layer-by-layer based strategy implied the successive deposition of poly(acrylic acid), poly(allylamine hydrochloride) and GG, which allowed the formation of a GG hydrogel-like shell with 7 nm thickness around individual AuNRs. Stability studies in a wide range of pH and salt concentrations showed that the polysaccharide coating can prevent AuNRs aggregation. Moreover, a reversible pH-responsive feature of the nanoparticles was observed. Cytocompatibility and osteogenic ability of GG-coated AuNRs was also addressed. After 14 days of culturing within SaOS-2, an osteoblast-like cell line, in vitro studies revealed that AuNRs-GG exhibit no cytotoxicity, were internalized by the cells and localized inside lysosomes. AuNRs-GG combined with osteogenic media enhanced the mineralization capacity two-fold, as compared to cells exposed to osteogenic media alone. The proposed system has shown interesting features for osteogenesis, and further insights might be relevant for drug delivery, tissue engineering and regenerative medicine.
Resumo:
The extracellular matrix (ECM) of tissues is an assembly of insoluble macromolecules that specifically interact with soluble bioactive molecules and regulate their distribution and availability to cells. Recapitulating this ability has been an important target in controlled growth factor delivery strategies for tissue regeneration and requires the design of multifunctional carriers. This review describes the integration of supramolecular interactions on the design of delivery strategies that encompass self-assembling and engineered affinity components to construct advanced biomimetic carriers for growth factor delivery. Several glycan- and peptide-based self-assemblies reported in the literature are highlighted and commented upon. These examples demonstrate how molecular design and chemistry are successfully employed to create versatile multifunctional molecules which self-assemble/disassemble in a precisely predicted manner, thus controlling compartmentalization, transport and delivery. Finally, we discuss whether recent advances in the design and preparation of supramolecular delivery systems have been sufficient to drive real translation towards a clinical impact.
Resumo:
Among the various possible embodiements of Advanced Therapies and in particular of Tissue Engineering the use of temporary scaffolds to regenerate tissue defects is one of the key issues. The scaffolds should be specifically designed to create environments that promote tissue development and not merely to support the maintenance of communities of cells. To achieve that goal, highly functional scaffolds may combine specific morphologies and surface chemistry with the local release of bioactive agents. Many biomaterials have been proposed to produce scaffolds aiming the regeneration of a wealth of human tissues. We have a particular interest in developing systems based in nanofibrous biodegradable polymers1,2. Those demanding applications require a combination of mechanical properties, processability, cell-friendly surfaces and tunable biodegradability that need to be tailored for the specific application envisioned. Those biomaterials are usually processed by different routes into devices with wide range of morphologies such as biodegradable fibers and meshes, films or particles and adaptable to different biomedical applications. In our approach, we combine the temporary scaffolds populated with therapeutically relevant communities of cells to generate a hybrid implant. For that we have explored different sources of adult and also embryonic stem cells. We are exploring the use of adult MSCs3, namely obtained from the bone marrow for the development autologous-based therapies. We also develop strategies based in extra-embryonic tissues, such as amniotic fluid (AF) and the perivascular region of the umbilical cord4 (Whartonâ s Jelly, WJ). Those tissues offer many advantages over both embryonic and other adult stem cell sourcess. These tissues are frequently discarded at parturition and its extracorporeal nature facilitates tissue donation by the patients. The comparatively large volume of tissue and ease of physical manipulation facilitates the isolation of larger numbers of stem cells. The fetal stem cells appear to have more pronounced immunomodulatory properties than adult MSCs. This allogeneic escape mechanism may be of therapeutic value, because the transplantation of readily available allogeneic human MSCs would be preferable as opposed to the required expansion stage (involving both time and logistic effort) of autologous cells. Topics to be covered: This talk will review our latest developments of nanostructured-based biomaterials and scaffolds in combination with stem cells for bone and cartilage tissue engineering.
Resumo:
We sought to verify the prevalence of lymphocytic thyroiditis (LT) and Hashimoto's thyroiditis (HT) in autopsy materials. Cases examined between 2003 and 2007 at the Department of Pathology of Faculty of Medicine of São Paulo University were studied. Immunohistochemical analyses were conducted in selected cases to characterize the type of infiltrating mononuclear cells; in addition, we evaluated the frequency of apoptosis by TUNEL assay technique and caspase-3 immunostaining. Significant increase in overall thyroiditis frequency was observed in the present series when compared with the previous report (2.2978% vs. 0.0392%). Thyroiditis was more prevalent among older people. Selected cases of LT and HT (5 cases each) had their infiltrating lymphocytes characterized by immunohistochemical analyses. Both LT and HT showed similar immunostaining patterns for CD4, CD8, CD68, thus supporting a common pathophysiology mechanism and indicating that LT and HT should be considered different presentations of a same condition, that is, autoimmune thyroiditis. Moreover, apoptosis markers strongly evidenced that apoptosis was present in all studied cases. Our results demonstrated an impressive increase in the prevalence of thyroiditis during recent years and our data support that the terminology of autoimmune thyroiditis should be used to designate both LT and HT. This classification would facilitate comparison of prevalence data from different series and studies.
Resumo:
Ag and AgxO thin films were deposited by non-reactive and reactive pulsed DC magnetron sputtering, respectively, with the final propose of functionalizing the SS316L substrate with antibacterial properties. The coatings were characterized chemically, physically and structurally. The coatings nanostructure was assessed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), while the coatings morphology was determined by scanning electron microscopy (SEM). The XRD and XPS analyses suggested that Ag thin film is composed by metallic Ag, which crystallizes in fcc-Ag phase, while the AgxO thin film showed both metallic Ag and Ag-O bonds, which crystalize in fcc-Ag and silver oxide phases. The SEM results revealed that Ag thin film formed a continuous layer, while AgxO layer was composed of islands with hundreds of nanometers surrounded by small nanoparticles with tens of nanometers. The surface wettability and surface tension parameters were determined by contact angle measurements, being found that Ag and AgxO surfaces showed very similar behavior, with all the surfaces showing a hydrophobic character. In order to verify the antibacterial behavior of the coatings, halo inhibition zone tests were realized for Staphylococcus epidermidis and Staphylococcus aureus. Ag coatings did not show antibacterial behavior, contrarily to AgxO coating, which presented antibacterial properties against the studied bacteria. The presence of silver oxide phase along with the development of different morphology were pointed as the main factors in the origin of the antibacterial effect found in AgxO thin film. The present study demonstrated that AgxO coating presented antibacterial behavior and its application in cardiovascular stents is promising.
Resumo:
Tese de Doutoramento em Engenharia Biomédica.
Resumo:
OBJECTIVE: To characterize the follow-up of an experimental model of left ventricular hypertrophy (LVH) induced by supravalvular ascending aortic stenosis in young rats. METHODS: Wistar rats were submitted to thoracotomy and aortic stenosis was created by placing a clip on the ascending aorta (AoS group, n=12). Age-matched control animals underwent a sham operation (C group, n=12). Cardiac function was analysed by echocardiograms performed 6, 12, and 21 weeks after aortic banding. Myocardial morphological features and myocardial hydroxyproline concentration (HOP) were evaluated 2, 6, 12, and 21 weeks after surgery in additional animals. RESULTS: Aortic banding promoted early concentric LVH and a progressive increase in HOP. Under light microscopy, we observed myocyte hypertrophy and wall thickening of the intramural branches of the coronary arteries due to medial hypertrophy. Cardiac function was supranormal after 6 weeks (percentage of fractional shortening - EAo6: 70.3±10.8; C6: 61.3±5.4; p<0.05), and depressed in the last period. Diastolic dysfunction was detected after 12 weeks (ratio of early-to-late filling velocity - EAo12: 4.20±3.25; C12: 1.61±0.16; p<0.05). CONCLUSION: Ascending aortic stenosis promotes concentric LVH with myocardial fibrosis and minimal histological changes. According to the period of evaluation, cardiac function may be improved, normal, or depressed. The model is suitable and useful for studies on pathophysiology and treatment of the different phases of cardiac hypertrophy.
Resumo:
2
Resumo:
Surgical procedures such as osteotomy and hip replacement involve the cutting of bone with the aid of various manual and powered cutting instruments including manual and powered bone saws. The basic mechanics of bone sawing processes are consistent with most other material sawing processes such as for wood or metal. Frictional rubbing between the blade of the saw and the bone results in the generation of localised heating of the cut bone. Research studies have been carried out which consider the design of the bone saw which deals with specifics of the saw teeth geometry and research which examines the effect of drilling operations on heating of the bone has shown that elevated temperatures will occur from frictional overheating. This overheating in localised areas is known to have an impact on the rate of healing of the bone post operation and the sharpness life of the blade. The purpose of this study was to measure the temperature at three zones at fixed intervals of 3mm, 6mm, and 9mm away from the cutting zone. It should be noted that it was the first time that this measurement technique was used to measure the temperature gradient through the bone specimen thereby establishing the extent to which clinicians are experiencing thermal injury during sawing of bone while using a reciprocating saw. The effect of various cutting feed rate on temperature elevation was also investigated in this research. The results showed that there will be a region of bone at least 9mm either side of the cutting blade experiencing thermal injury as temperatures in this region exceeded the threshold temperature of 44°C for necrosis (cell death).