961 resultados para bimodal size distribution


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The influence of environmental conditions on the indoor radon daughters spatial distribution is studied both theoretically and experimentally. Simple theoretical calculations indicate that ventilation and variation in the size distribution of aerosols should play an important role influencing the spatial distribution of indoor radon decay products, but experimental results indicate that these environmental factors have little influence on the spatial distribution of radon daughters near the walls of indoor environments. We have observed that the maximum effective range of the plate-out effect varies only between I and 3 cm in typical dwellings. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the tropical Atlantic Forest, 42 canopy gaps had their areas estimated using four different field methods of measurement: Runkle, Brokaw and Green [Runkle, J.R., 1981. Gap formation in some old-growth forests of the eastern United States. Ecology 62, 1041-1051; Brokaw, N.V.L., 1982. The definition of treefall gap and its effect on measures of forest dynamics. Biotropica 14, 158-160; Green, P.T., 1996. Canopy Gaps in rain forest on Christmas Island, Indian Ocean: size distribution and methods of measurement. J. Trop. Ecol. 12, 427-434] and a new method proposed in this work. It was found that within the same gap delimitation, average gap size varied from 56.0 up to 88.3 m(3) while total sum of gap area varied from 2351.3 to 3707.9 m(3) Differences among all methods and between pairs of method proved to be statistically significant. As a consequence, gap size-class distribution was also different between methods. When one method is held as a standard, deviation on average values of gap size ranged between 11.8 and 59.7% as deviations on single gap size can reach 172.8%. Implications on forest dynamics were expressed by the forest turnover rate that was 24% faster or 15% slower depending on the method adopted for gap measurement. Based on my results and on methods' evaluation, the use of a new method is proposed here for future research involving the measure of gap size in forest ecosystems. Finally, it is concluded that forest comparisons disregarding the influence of different methods of gap measurement should be reconsidered. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Direct-sampling and remote-sensing measurements were made at the crater rim of Masaya volcano (Nicaragua) to sample the aerosol plume emanating from the active vent. We report the first measurements of the size distribution of fine silicate particles (d <10 mu m) in Masaya's plume, by automated scanning electron microscopy (QEMSCAN) analysis of a particle filter. The particle size distribution was approximately lognormal with modal d similar to 1.15 mu m. The majority of these particles were found to be spherical. These particles are interpreted to be droplets of quenched magma produced by a spattering process. Compositional analyses confirm earlier reports that the fine silicate particles show a range of compositions between that of the degassing magma and nearly pure silica and that the extent of compositional variability decreases with increasing particle size. These results indicate that fine silicate particles are altered owing to reactions with acidic droplets in the plume. The emission flux of fine silicate particles was estimated as similar to 10(11) s(-1), equivalent to similar to 55 kg d(-1). Sun photometry, aerosol spectrometry, and thermal precipitation were used to determine the overall particle size distribution of the plume (0.01 < d(mu m) < 10). Sun photometry and aerosol spectrometry measurements indicate the presence of a large number of particles (assumed to be aqueous) with d similar to 1 mu m. Aerosol spectrometry measurements further show an increase in particle size as the nighttime approached. The emission flux of particles from Masaya was estimated as similar to 10(17) s(-1), equivalent to similar to 5.5 Mg d(-1) where d < 4 mu m.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Particle size distributions for soluble and insoluble species in Mt. Etna's summit plumes were measured across an extended size range (10 nm < d < 100 mu m) using a combination of techniques. Automated scanning electron microscopy (QEMSCAN) was used to chemically analyze many thousands of insoluble particles (collected on pumped filters) allowing the relationships between particle size, shape, and composition to be investigated. The size distribution of fine silicate particles (d < 10 mu m) was found to be lognormal, consistent with formation by bursting of gas bubbles at the surface of the magma. The compositions of fine silicate particles were found to vary between magmatic and nearly pure silica; this is consistent with depletion of metal ions by reactions in the acidic environment of the gas plume and vent. Measurements of the size, shape and composition of fine silicate particles may potentially offer insights into preemission, synemission, and postemission processes. The mass flux of fine silicate particles from Mt. Etna released during noneruptive volcanic degassing in 2004 and 2005 was estimated to be similar to 7000 kg d(-1). Analysis of particles in the range 0.1 < d/mu m < 100 by ion chromatography shows that there are persistent differences in the size distributions of sulfate aerosols between the two main summit plumes. Analysis of particles in the range 0.01 mu m < d < 0.1 mu m by scanning transmission electron microscopy (STEM) shows that there are significant levels of nanoparticles in the Mt. Etna plumes although their compositions remain uncertain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Non-crystalline silica was obtained with different particle sizes. Samples were prepared from soluble sodium silicate (water glass) and sulfuric acid solutions. Dialysis was performed for sodium sulfate elimination. Products were dried in a microwave oven, milled and characterized by X-ray powder diffraction, infrared spectrum and sedigraphic analysis. Products milled for more than 120 minutes showed uniform particle size distribution with average silica particle size of 4.5 mu m.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we describe the production of zirconia-based foams by a novel thermostimulated sol-gel route, that employs the foaming of colloidal suspensions prior to the sol-gel transition promoted by small increase of temperature (congruent to3 degreesC). This method produces gelled bodies having porosity >70% in the wet stage, and can be used to produce complex-shaped components. The effect of a foaming agent (Freon11 or CCl3F) and surfactant content on the formation and stability of the foams was analyzed. The rheologic measurements demonstrate that by increasing the surfactant concentration, the gelation time decreases increasing foam stability. As the surfactant concentration and quantity of foaming agent increase, the density decreases and the porosity increases. Hg porosimetry results show that the dry foam presents a bimodal pore size distribution. The family of sub-micrometer pores was attributed to the formation of a microemulsion between Freon11 and water. Scanning electron microscopy analysis shows that the foam structure consists of a three-dimensional network of spherical pores, which may be open and interconnected or closed, at larger or smaller porosities, respectively. Finally these results show that the thermostimulated sol-gel transition provides a potential route for ceramic foam manufacture. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of heating rate on the sintering of agglomerated NaNbO3 powders, processed by the polymeric precursors method, was studied. The results showed that the presence of agglomerated powder leads to a heterogeneous microstructure, with bimodal grain size distribution, after sintering. Using a high heating rate, the sintering of agglomerated particles was inhibits, leading to a homogeneous microstructure, with single grain size distribution. (C) 1998 Kluwer Academic Publishers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multifractal analysis is now increasingly used to characterize soil properties as it may provide more information than a single fractal model. During the building of a large reservoir on the Parana River (Brazil), a highly weathered soil profile was excavated to a depth between 5 and 8 m. Excavation resulted in an abandoned area with saprolite materials and, in this area, an experimental field was established to assess the effectiveness of different soil rehabilitation treatments. The experimental design consisted of randomized blocks. The aim of this work was to characterize particle-size distributions of the saprolite material and use the information obtained to assess between-block variability. Particle-size distributions of the experimental plots were characterized by multifractal techniques. Ninety-six soil samples were analyzed routinely for particle-size distribution by laser diffractometry in a range of scales, varying from 0.390 to 2000 mu m. Six different textural classes (USDA) were identified with a clay content ranging from 16.9% to 58.4%. Multifractal models described reasonably well the scaling properties of particle-size distributions of the saprolite material. This material exhibits a high entropy dimension, D-1. Parameters derived from the left side (q > 0) of the f(alpha) spectra, D-1, the correlation dimension (D-2) and the range (alpha(0)-alpha(q+)), as well as the total width of the spectra (alpha(max) - alpha(min)) all showed dependence on the clay content. Sand, silt and clay contents were significantly different among treatments as a consequence of soil intrinsic variability. The D, and the Holder exponent of order zero, alpha(0), were not significantly different between treatments; in contrast, D-2 and several fractal attributes describing the width of the f(alpha) spectra were significantly different between treatments. The only parameter showing significant differences between sampling depths was (alpha(0) - alpha(q+)). Scale independent fractal attributes may be useful for characterizing intrinsic particle-size distribution variability. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Here we describe the application of microparticles (MPs) for the delivery and release of the drug a benzopsoralen. We also evaluated the intracellular distribution and cellular uptake of the drug by using an encapsulation technique for therapeutic optimization. MPs containing the compound 3-ethoxycarbonyl-2H-benzofuro[3,2-f]-1-benzopyran-2-one (psoralen A) were prepared by the solvent evaporation technique, and parameters such as particle size, drug encapsulation efficiency, effect of the encapsulation process on the drug's photochemistry, zeta potential, external morphology, and < i > in vitro release behavior were evaluated. The intracellular distribution of MPs as well as their uptake by tissues were monitored. Size distribution studies using dynamic ligh scattering and scanning electron microscopy revealed that the MPs are spherical in shape with a diameter of 1.4 mu m. They present low tendency toward aggregation, as confirmed by their zeta potential (+10.6 mV). The loading efficiency obtained was 75%. As a consequence of the extremely low diffusivity of the drug in aqueous medium, the drug release profile of the MPs in saline phosphate buffer (pH 7.4) was much slower than that obtained in the biological environment. Among the population of peritoneal phagocytic cells, only macrophages were able to phagocytose poly-d,l-lactic-co-glycolic acid (PLGA) MP. The use of psoralen A in association with ultraviolet light (360 nm) revealed morphological characteristics of cell damage such as cytoplasmic vesiculation, mitochondria condensation, and swelling of both the granular endoplasmatic reticulum and the nuclear membrane. These results indicate that PLGA MP could be a promising delivery system for psoralen in connection with ultraviolet irradiation therapy (PUVA).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper reviews the influence of particle size distribution, agglomerates, rearrangement, sintering atmospheres and impurities on the pore evolution of some commonly studied oxides. These factors largely affect sintering mechanisms due to modifications of diffusion coefficients or evaporation-condensation. Very broad particle size distribution leads to grain growth and agglomerates densify first. Rearrangement of particles due to neck asymmetry mainly in the early stage of sintering is responsible for a high rate of densification in the first minutes of sintering by collapse of large pores. Sintering atmospheres play an important role in both densification and pore evolution. The chemical interaction of water molecules with several oxides like MgO, ZnO and SnO2 largely affects surface diffusion. As a consequence, there is an increase in the rates of pore growth and densification for MgO and ZnO and in the rate of pore growth for SnO2. Carbon dioxide does not affect the rate of sintering of MgO but greatly affects both rates of pore growth and densification of ZnO. Oxygen concentration in the atmosphere can especially affect semiconductor oxides but significantly affects the rate of pore growth of SnO2. Impurities like chlorine ions increase the rate of pore growth in MgO due to evaporation of HCl and Mg(OH)Cl, increasing the rate of densification and particle cuboidization. CuO promotes densification in SnO2, and is more effective in dry air. The rate of densification decrease and pore widening are promoted in argon. An inert atmosphere favors SnO2 evaporation due to reduction of CuO. © 1990.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Patterns of attack for collected species of phorids are predicted using multivariate morphometrics of female Pseudacteon species and worker size distributions of parasitized fire ants, Solenopsis saevissima. The model assumes that there is a direct correlation between phorid size and the size range of the worker ant attacked, and presumes that worker sizes are a resource that is divided by sympatric phorid species to minimize joint parasitism. These results suggest that the community of sympatric Pseudacteon species on only one host species coexists by restricting the size of workers attacked, and secondarily by differing diel patterns of ovipositional activity. When we compared relative abundance of species of Pseudacteon with the size distribution of foragers of S. saevissima, our observed distribution did not differ significantly from our predicted relative abundance of females of Pseudacteon. The activity of Pseudacteon may be a factor determining forager size distributions.