963 resultados para benthic-pelagic coupling
Spread-F/sporadic E coupling at Chung-Li, especially for postsunset periods of sunspot maximum years
Resumo:
The synthesis of helium in the early Universe depends on many input parameters, including the value of the gravitational coupling during the period when the nucleosynthesis takes place. We compute the primordial abundance of helium as function of the gravitational coupling, using a semi-analytical method, in order to track the influence of G in the primordial nucleosynthesis. To be specific, we construct a cosmological model with varying G, using the Brans-Dicke theory. The greater the value of G at nucleosynthesis period, the greater the predicted abundance of helium. Using the observational data for the abundance of primordial helium, constraints for the time variation of G are established.
Resumo:
Neste trabalho nós estudamos a dieta da tartaruga verde, Chelonia mydas, e os fatores envolvidos na variação de sua ecologia alimentar. Avaliamos também o impacto da ingestão de lixo, e os fatores que podem explicar a elevada ingestão destes resíduos entre os animais marinhos. No estudo da ecologia alimentar, nós avaliamos mais de 400 indivíduos, entre dados originais e da literatura, distribuídos ao longo de um gradiente latitudinal e diversos ambientes. As tartarugas se alimentaram majoritariamente de macroalgas, porém apresentaram uma grande plasticidade alimentar, tanto em relação à estratégia de forrageamento quanto à dieta. Nas regiões mais frias e com menor disponibilidade de algas, as tartarugas mudaram de uma dieta herbívora, para uma dieta baseada em matéria animal. Esta mudança de dieta acarretou também em uma mudança de estratégia de forrageamento, saindo da alimentação bentônica para uma alimentação pelágica. Estratégia esta que também foi encontrada nas áreas estuarinas. A plasticidade alimentar se deve à interação de fatores intrínsecos (restrições fisiológicas) e extrínsecos (regionais e locais). As diferenças nas estratégias de forragenamento acarretam também em diferenças na exposição a ameaças. Um exemplo disso é a ingestão de lixo, que apesar de ter sido registrada em mais de 70% das tartarugas (N = 265), representou uma ameaça maior aos animais com estratégia de forrageamento pelágica. O plástico foi o material mais ingerido, tendo como principal fonte itens relacionados à alimentação e sacolas plásticas. O estudo também mostrou que uma quantidade pequena de lixo (0,5 g) é suficiente para causar a morte. Este resultado revelou que o potencial de letalidade por ingestão de lixo é muito maior que a mortalidade observada. A verdadeira ameaça da ingestão de lixo está sendo mascarada pela elevada mortalidade relacionada às atividades pesqueiras. A ingestão de lixo é normalmente atribuída à confusão de um item alimentar específico com o resíduo, como águas-vivas e sacolas plásticas. Porém, nós mostramos que se trata de uma questão mais ampla, e usamos a tartaruga verde, aves marinhas e peixes para ressaltar a importância de outros fatores como: abundância do lixo no ambiente, estratégia de forrageamento, capacidade de detecção do resíduo e amplitude da dieta. Nós acreditamos que a ingestão de lixo ocorre devido a uma armadilha evolutiva muito mais ampla do que a previamente sugerida, e que deve afetar muito mais espécies que as que foram até hoje reportadas. Desarmar esta armadilha será particularmente difícil devido ao contínuo e crescente despejo de plástico no ambiente marinho e sua alta persistência no ambiente.
Resumo:
A numeric model has been proposed to investigate the mechanical and electrical properties of a polymeric/carbon nanotube (CNT) composite material subjected to a deformation force. The reinforcing phase affects the behavior of the polymeric matrix and depends on the nanofiber aspect ratio and preferential orientation. The simulations show that the mechanical behavior of a computer generated material (CGM) depends on fiber length and initial orientation in the polymeric matrix. It is also shown how the conductivity of the polymer/CNT composite can be calculated for each time step of applied stress, effectively providing the ability to simulate and predict strain-dependent electrical behavior of CNT nanocomposites.
Resumo:
The concentrations of 18 polycyclic aromatic hydrocarbons (PAHs) were determined in three commercially valuable fish species (sardine, Sardina pilchardus; chub mackerel, Scomber japonicus; and horse mackerel, Trachurus trachurus) from the Atlantic Ocean. Specimens were collected seasonally during 2007–2009. Only low molecular weight PAHs were detected, namely, naphthalene, acenaphthene, fluorene and phenanthrene. Chub mackerel (1.80–19.90 microg/kg ww) revealed to be significantly more contaminated than horse mackerel (2.73–10.0 microg/kg ww) and sardine (2.29–14.18 microg/kg ww). Inter-specific and inter-season comparisons of PAHs bioaccumulation were statistically assessed. The more relevant statistical correlations were observed between PAH amounts and total fat content (significant positive relationships, p < 0.05), and season (sardine displayed higher amounts in autumn–winter while the mackerel species showed globally the inverse behavior). The health risks by consumption of these species were assessed and shown to present no threat to public health concerning PAH intakes.
Resumo:
Copyright © Springer-Verlag Berlin Heidelberg and AWI 2014.
Resumo:
Copyright © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Cephalopod International Advisory Council Conference: Recent Advances in Cephalopod Science, November 6-14, 2015, Hakodate, Japan.
Resumo:
This paper is devoted to the synchronization of a dynamical system defined by two different coupling versions of two identical piecewise linear bimodal maps. We consider both local and global studies, using different tools as natural transversal Lyapunov exponent, Lyapunov functions, eigenvalues and eigenvectors and numerical simulations. We obtain theoretical results for the existence of synchronization on coupling parameter range. We characterize the synchronization manifold as an attractor and measure the synchronization speed. In one coupling version, we give a necessary and sufficient condition for the synchronization. We study the basins of synchronization and show that, depending upon the type of coupling, they can have very different shapes and are not necessarily constituted by the whole phase space; in some cases, they can be riddled.
Resumo:
Three commonly consumed and commercially valuable fish species (sardine, chub and horse mackerel) were collected from the Northeast and Eastern Central Atlantic Ocean in Portuguese waters during one year. Mercury, cadmium, lead and arsenic amounts were determined in muscles using graphite furnace and cold vapour atomic absorption spectrometry. Maximum mean levels of mercury (0.1715 ± 0.0857 mg/kg, ww) and arsenic (1.139 ± 0.350 mg/kg, ww) were detected in horse mackerel. The higher mean amounts of cadmium (0.0084 ± 0.0036 mg/kg, ww) and lead (0.0379 ± 0.0303 mg/kg, ww) were determined in chub mackerel and in sardine, respectively. Intra- and inter-specific variability of metals bioaccumulation was statistically assessed and species and length revealed to be the major influencing biometric factors, in particular for mercury and arsenic. Muscles present metal concentrations below the tolerable limits considered by European Commission Regulation and Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO). However, estimation of non-carcinogenic and carcinogenic health risks by the target hazard quotient and target carcinogenic risk, established by the US Environmental Protection Agency, suggests that these species must be eaten in moderation due to possible hazard and carcinogenic risks derived from arsenic (in all analyzed species) and mercury ingestion (in horse and chub mackerel species).
Resumo:
Wind resource evaluation in two sites located in Portugal was performed using the mesoscale modelling system Weather Research and Forecasting (WRF) and the wind resource analysis tool commonly used within the wind power industry, the Wind Atlas Analysis and Application Program (WAsP) microscale model. Wind measurement campaigns were conducted in the selected sites, allowing for a comparison between in situ measurements and simulated wind, in terms of flow characteristics and energy yields estimates. Three different methodologies were tested, aiming to provide an overview of the benefits and limitations of these methodologies for wind resource estimation. In the first methodology the mesoscale model acts like “virtual” wind measuring stations, where wind data was computed by WRF for both sites and inserted directly as input in WAsP. In the second approach, the same procedure was followed but here the terrain influences induced by the mesoscale model low resolution terrain data were removed from the simulated wind data. In the third methodology, the simulated wind data is extracted at the top of the planetary boundary layer height for both sites, aiming to assess if the use of geostrophic winds (which, by definition, are not influenced by the local terrain) can bring any improvement in the models performance. The obtained results for the abovementioned methodologies were compared with those resulting from in situ measurements, in terms of mean wind speed, Weibull probability density function parameters and production estimates, considering the installation of one wind turbine in each site. Results showed that the second tested approach is the one that produces values closest to the measured ones, and fairly acceptable deviations were found using this coupling technique in terms of estimated annual production. However, mesoscale output should not be used directly in wind farm sitting projects, mainly due to the mesoscale model terrain data poor resolution. Instead, the use of mesoscale output in microscale models should be seen as a valid alternative to in situ data mainly for preliminary wind resource assessments, although the application of mesoscale and microscale coupling in areas with complex topography should be done with extreme caution.
Resumo:
A procedure for coupling mesoscale and CFD codes is presented, enabling the inclusion of realistic stratification flow regimes and boundary conditions in CFD simulations of relevance to site and resource assessment studies in complex terrain. Two distinct techniques are derived: (i) in the first one, boundary conditions are extracted from mesoscale results to produce time-varying CFD solutions; (ii) in the second case, a statistical treatment of mesoscale data leads to steady-state flow boundary conditions believed to be more representative than the idealised profiles which are current industry practice. Results are compared with measured data and traditional CFD approaches.
Resumo:
We look for minimal chiral sets of fermions beyond the standard model that are anomaly free and, simultaneously, vectorlike particles with respect to color SU(3) and electromagnetic U(1). We then study whether the addition of such particles to the standard model particle content allows for the unification of gauge couplings at a high energy scale, above 5.0 x 10(15) GeV so as to be safely consistent with proton decay bounds. The possibility to have unification at the string scale is also considered. Inspired in grand unified theories, we also search for minimal chiral fermion sets that belong to SU(5) multiplets, restricted to representations up to dimension 50. It is shown that, in various cases, it is possible to achieve gauge unification provided that some of the extra fermions decouple at relatively high intermediate scales.
Resumo:
It has been pointed out recently that current experiments still allow for a two Higgs doublet model where the hbb¯ coupling (kDmb/v) is negative; a sign opposite to that of the Standard Model. Due to the importance of delayed decoupling in the hH+H− coupling, h→γγ improved measurements will have a strong impact on this issue. For the same reason, measurements or even bounds on h→Zγ are potentially interesting. In this article, we revisit this problem, highlighting the crucial importance of h→VV, which can be understood with simple arguments. We show that the impacts on kD<0 models of both h→bb¯ and h→τ+τ− are very sensitive to input values for the gluon fusion production mechanism; in contrast, h→γγ and h→Zγ are not. We also inquire if the search for h→Zγ and its interplay with h→γγ will impact the sign of the hbb¯ coupling. Finally, we study these issues in the context of the flipped two Higgs doublet model.
Resumo:
The present work aims to achieve and further develop a hydrogeomechanical approach in Caldas da Cavaca hydromineral system rock mass (Aguiar da Beira, NW Portugal), and contribute to a better understanding of the hydrogeological conceptual site model. A collection of several data, namely geology, hydrogeology, rock and soil geotechnics, borehole hydraulics and hydrogeomechanics, was retrieved from three rock slopes (Lagoa, Amores and Cancela). To accomplish a comprehensive analysis and rock engineering conceptualisation of the site, a multi‐technical approach were used, such as, field and laboratory techniques, hydrogeotechnical mapping, hydrogeomechanical zoning and hydrogeomechanical scheme classifications and indexes. In addition, a hydrogeomechanical data analysis and assessment, such as Hydro‐Potential (HP)‐Value technique, JW Joint Water Reduction index, Hydraulic Classification (HC) System were applied on rock slopes. The hydrogeomechanical zone HGMZ 1 of Lagoa slope achieved higher hydraulic conductivities with poorer rock mass quality results, followed by the hydrogeomechanical zone HGMZ 2 of Lagoa slope, with poor to fair rock mass quality and lower hydraulic parameters. In addition, Amores slope had a fair to good rock mass quality and the lowest hydraulic conductivity. The hydrogeomechanical zone HGMZ 3 of Lagoa slope, and the hydrogeomechanical zones HGMZ 1 and HGMZ 2 of Cancela slope had a fair to poor rock mass quality but were completely dry. Geographical Information Systems (GIS) mapping technologies was used in overall hydrogeological and hydrogeomechanical data integration in order to improve the hydrogeological conceptual site model.