972 resultados para autosomal dominant inheritances


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The aim of the study was to search for mutations of SCNN1B and SCNN1G in an Italian family with apparently dominant autosomal transmission of a clinical phenotype consistent with Liddle's syndrome. METHODS: Genetic analysis was performed in the proband, his relatives, and 100 control subjects. To determine the functional role of the mutation identified in the proband, we expressed the mutant or wild-type epithelial sodium channel in Xenopus laevis oocytes. RESULTS: A novel point mutation, causing an expected substitution of a leucine residue for the second proline residue of the conserved PY motif (PPP x Y) of the beta subunit was identified in the proband. The functional expression of the mutant epithelial sodium channel in X. laevis oocytes showed a three-fold increase in the amiloride-sensitive current as compared with that of the wild-type channel. CONCLUSION: This newly identified mutation adds to other missense mutations of the PY motif of the beta subunit of the epithelial sodium channel, thus confirming its crucial role in the regulation of the epithelial sodium channel. To our knowledge, this is the first report of Liddle's syndrome in the Italian population, confirmed by genetic and functional analysis, with the identification of a gain-of-function mutation not previously reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Posterior microphthalmos (MCOP)/nanophthalmos (NNO) is a developmental anomaly characterized by extreme hyperopia due to short axial length. The population of the Faroe Islands shows a high prevalence of an autosomal recessive form (arMCOP). The gene mutated in arMCOP is not yet known.Methods: Genetic mapping by linkage analysis using microsatellite and single nucleotide polymorphisms, mutation analysis by PCR and sequencing, molecular modellingResults: Having refined the position of the disease locus (MCOP6) in an interval of 250 kb in chromosome 2q37.1 in Faroese families, we detected 3 mutations in a novel gene, LOC646960: Patients of 10 different Faroese families were either homozygous (n=22) for c.926G>C (p.Trp309Ser) or compound heterozygous (n=6) for c.926G>C and c.526C>G (p.Arg176Gly), whereas a homozygous 1 bp duplication (c.1066dupC) was identified in patients with arNNO from a Tunisian family. In two unrelated patients with MCOP, no LOC646960 mutation was found. LOC646960 is expressed in the human adult retina and RPE. The expression of the mouse homologue in the eye can be first detected at E17 and is highest in adults. The predicted protein is a 603 amino acid long secreted trypsin-like serine peptidase. c.1066dupC should result in a functional null allele. Molecular modelling of the p.Trp309Ser mutant suggests that both affinity and reactivity of the enzyme towards in vivo substrates are substantially reduced.Conclusions: Postnatal growth of the eye is important for proper development of the refractive components (emmetropization), and is mainly due to elongation of the posterior segment from 10-11 mm at birth to 15-16 mm at the age of 13 years. Optical defocus leads to changes in axial length by moving the retina towards the image plane. arMCOP may theoretically be explained, in line with the expression pattern of LOC646960, by a postnatal growth retardation of the posterior segment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Mutations in SCN4A may lead to myotonia. METHODS: Presentation of a large family with myotonia, including molecular studies and patch clamp experiments using human embryonic kidney 293 cells expressing wild-type and mutated channels. RESULTS: In a large family with historic data on seven generations and a clear phenotype, including myotonia at movement onset, with worsening by cold temperature, pregnancy, mental stress, and especially after rest after intense physical activity, but without weakness, the phenotype was linked with the muscle sodium channel gene (SCN4A) locus, in which a novel p.I141V mutation was found. This modification is located within the first transmembrane segment of domain I of the Na(v)1.4 alpha subunit, a region where no mutation has been reported so far. Patch clamp experiments revealed a mutation-induced hyperpolarizing shift (-12.9 mV) of the voltage dependence of activation, leading to a significant increase (approximately twofold) of the window current amplitude. In addition, the mutation shifted the voltage dependence of slow inactivation by -8.7 mV and accelerated the entry to this state. CONCLUSIONS: We propose that the gain-of-function alteration in activation leads to the observed myotonic phenotype, whereas the enhanced slow inactivation may prevent depolarization-induced paralysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two major isoforms of aquaporin-4 (AQP4) have been described in human tissue. Here we report the identification and functional analysis of an alternatively spliced transcript of human AQP4, AQP4-Δ4, that lacks exon 4. In transfected cells AQP4-Δ4 is mainly retained in the endoplasmic reticulum and shows no water transport properties. When AQP4-Δ4 is transfected into cells stably expressing functional AQP4, the surface expression of the full-length protein is reduced. Furthermore, the water transport activity of the cotransfectants is diminished in comparison to transfectants expressing only AQP4. The observed down-regulation of both the expression and water channel activity of AQP4 is likely to originate from a dominant-negative effect caused by heterodimerization between AQP4 and AQP4-Δ4, which was detected in coimmunoprecipitation studies. In skeletal muscles, AQP4-Δ4 mRNA expression inversely correlates with the level of AQP4 protein and is physiologically associated with different types of skeletal muscles. The expression of AQP4-Δ4 may represent a new regulatory mechanism through which the cell-surface expression and therefore the activity of AQP4 can be physiologically modulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: We have previously demonstrated that mutations in the FAM161A gene, encoding a protein with unknown function and no similarities with other characterized sequences, cause autosomal recessive retinitis pigmentosa (RP). The purpose of this work is to investigate the functional role of FAM161A within the retina and its relationship with other proteins involved in RP. Methods: The subcellular localization of FAM161A in the retina was assessed by immunohistochemistry of retinal sections and dissociated photoreceptors from mice, which were stained using antibodies against FAM161A and antibodies against cilium markers. The function of FAM161A was further assessed in ciliated mammalian cell lines by expression of recombinant FAM161A with various fusion tags. The binary interaction between FAM161A and a collection of ciliary and ciliopathy-associated proteins was analyzed using a yeast two-hybrid assay. The results obtained with this technique were validated using independent protein-protein interaction assays (GST-pull downs, co-transfection and co-immunoprecipitation). Results: Native FAM161A localized at the connecting cilium of photoreceptor cells, as demonstrated by immunofluorescence in both dissociated photoreceptors and retinal sections of mice. More specifically, co-staining with markers for ciliary sub-structures (RPGRIP1L, Centrin, RP1, GT335) demonstrated that FAM161A decorated the basal body and the very apical part of the connecting cilium. Upon overexpression in ciliated cultured mammalian cells, FAM161A localized to the ciliary basal body. Yeast two-hybrid analysis of the binary interaction of FAM161A and an array of ciliary proteins revealed the direct interaction of FAM161A with three proteins of which the cognate genes are mutated in retinal ciliopathies. The confirmation of these interactions using different biochemical assays is currently in progress. Conclusions: FAM161A is a ciliary basal body protein of the photoreceptor connecting cilium, rendering the associated RP as a novel retinal ciliopathy. The confined expression of FAM161A in the retina and the direct interaction of FAM161A with other retinal ciliopathy-associated proteins may explain the retinal phenotype of this specific subset of mechanistically and phenotypically connected retinal disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many nuclear hormone receptors are involved in the regulation of skin homeostasis. However, their role in the epithelial compartment of the skin in stress situations, such as skin healing, has not been addressed yet. The healing of a skin wound after an injury involves three major cell types: immune cells, which are recruited to the wound bed; dermal fibroblasts; and epidermal and hair follicle keratinocytes. Our previous studies have revealed important but nonredundant roles of PPARalpha and beta/delta in the reparation of the skin after a mechanical injury in the adult mouse. However, the mesenchymal or epithelial cellular compartment in which PPARalpha and beta/delta play a role could not be determined in the null mice used, which have a germ line PPAR gene invalidation. In the present work, the role of PPARalpha was studied in keratinocytes, using transgenic mice that express a PPARalpha mutant with dominant-negative (dn) activity specifically in keratinocytes. This dn PPARalpha lacks the last 13 C terminus amino acids, binds to a PPARalpha agonist, but is unable to release the nuclear receptor corepressor and to recruit the coactivator p300. When selectively expressed in keratinocytes of transgenic mice, dn PPARalphaDelta13 causes a delay in the healing of skin wounds, accompanied by an exacerbated inflammation. This phenotype, which is similar to that observed in PPARalpha null mice, strongly suggests that during skin healing, PPARalpha is required in keratinocytes rather than in other cell types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caveolins are a crucial component of caveolae but have also been localized to the Golgi complex, and, under some experimental conditions, to lipid bodies (LBs). The physiological relevance and dynamics of LB association remain unclear. We now show that endogenous caveolin-1 and caveolin-2 redistribute to LBs in lipid loaded A431 and FRT cells. Association with LBs is regulated and reversible; removal of fatty acids causes caveolin to rapidly leave the lipid body. We also show by subcellular fractionation, light and electron microscopy that during the first hours of liver regeneration, caveolins show a dramatic redistribution from the cell surface to the newly formed LBs. At later stages of the regeneration process (when LBs are still abundant), the levels of caveolins in LBs decrease dramatically. As a model system to study association of caveolins with LBs we have used brefeldin A (BFA). BFA causes rapid redistribution of endogenous caveolins to LBs and this association was reversed upon BFA washout. Finally, we have used a dominant negative LB-associated caveolin mutant (cavDGV) to study LB formation and to examine its effect on LB function. We now show that the cavDGV mutant inhibits microtubule-dependent LB motility and blocks the reversal of lipid accumulation in LBs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent study suggests that sex-specific dispersal rates can be quantitatively estimated on the basis of sex- and state-specific (pre- vs. postdispersal) F-statistics. In the present paper, we extend this approach to account for the hierarchical structure of natural populations, and we validate it through individual-based simulations. The model is applied to an empirical data set consisting of 536 individuals (males, females, and predispersal juveniles) of greater white-toothed shrews (Crocidura russula), sampled according to a hierarchical design and typed for seven autosomal microsatellite loci. From this dataset, dispersal is significantly female biased at the local scale (breeding-group level), but not at the larger scale (among local populations). We argue that selective pressures on dispersal are likely to depend on the spatial scale considered, and that short-distance dispersal should mainly respond to kin interactions (inbreeding or kin competition avoidance), which exert differential pressure on males and females.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charcot-Marie-Tooth disease (CMT) comprises a clinically and genetically heterogeneous group of peripheral neuropathies characterized by progressive distal muscle weakness and atrophy, foot deformities and distal sensory loss. Following the analysis of two consanguineous families affected by a medium to late-onset recessive form of intermediate CMT, we identified overlapping regions of homozygosity on chromosome 1p36 with a combined maximum LOD score of 5.4. Molecular investigation of the genes from this region allowed identification of two homozygous mutations in PLEKHG5 that produce premature stop codons and are predicted to result in functional null alleles. Analysis of Plekhg5 in the mouse revealed that this gene is expressed in neurons and glial cells of the peripheral nervous system, and that knockout mice display reduced nerve conduction velocities that are comparable with those of affected individuals from both families. Interestingly, a homozygous PLEKHG5 missense mutation was previously reported in a recessive form of severe childhood onset lower motor neuron disease (LMND) leading to loss of the ability to walk and need for respiratory assistance. Together, these observations indicate that different mutations in PLEKHG5 lead to clinically diverse outcomes (intermediate CMT or LMND) affecting the function of neurons and glial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Congenital stationary night blindness (CSNB) is a heterogeneous retinal disorder characterized by visual impairment under low light conditions. This disorder is due to a signal transmission defect from rod photoreceptors to adjacent bipolar cells in the retina. Two forms can be distinguished clinically, complete CSNB (cCSNB) or incomplete CSNB; the two forms are distinguished on the basis of the affected signaling pathway. Mutations in NYX, GRM6, and TRPM1, expressed in the outer plexiform layer (OPL) lead to disruption of the ON-bipolar cell response and have been seen in patients with cCSNB. Whole-exome sequencing in cCSNB patients lacking mutations in the known genes led to the identification of a homozygous missense mutation (c.1807C>T [p.His603Tyr]) in one consanguineous autosomal-recessive cCSNB family and a homozygous frameshift mutation in GPR179 (c.278delC [p.Pro93Glnfs(∗)57]) in a simplex male cCSNB patient. Additional screening with Sanger sequencing of 40 patients identified three other cCSNB patients harboring additional allelic mutations in GPR179. Although, immunhistological studies revealed Gpr179 in the OPL in wild-type mouse retina, Gpr179 did not colocalize with specific ON-bipolar markers. Interestingly, Gpr179 was highly concentrated in horizontal cells and Müller cell endfeet. The involvement of these cells in cCSNB and the specific function of GPR179 remain to be elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Studies on large animal models are an important step to test new therapeutical strategies before human application. Considering the importance of cone function for human vision and the paucity of large animal models for cone dystrophies having an enriched cone region, we propose to develop a pig model for cone degeneration. With a lentiviral-directed transgenesis, we obtained pigs transgenic for a cone-dominant mutant gene described in a human cone dystrophy.Methods: Lentiviral vectors encoding the human double mutant GUCY2DE837D/R838S cDNA under the control of a region of the pig arrestin-3 promoter (Arr3) was produced and used for lentiviral-derived transgenesis in pigs. PCR-genotyping and southern blotting determined the genotype of pigs born after injection of the vector at the zygote stage. Retina function analysis was performed by ERG and behavioral tests at 11, 24 and 54 weeks of age. OCT and histological analyses were performed to describe the retina morphology.Results: The ratio of transgenic pigs born after lentiviral-directed transgenesis was close to 50%. Transgenic pigs with 3 to 5 transgene copies per cell clearly present a reduced photopic response from 3 months of age on. Except for one pig, which has 6 integrated transgene copies, no dramatic decrease in general mobility was observed even at 6 months of age. OCT examinations reveal no major changes in the ONL structure of the 6-months old pigs. The retina morphology was well conserved in the 2 pigs sacrificed (3 and 6 months old) except a noticeable displacement of some cone nuclei in the outer segment layer.Conclusions: Lentiviral-directed transgenesis is a rapid and straightforward method to engineer transgenic pigs. Some Arr3-GUCY2DE837D/R838S pigs show signs of retinal dysfunction but further work is needed to describe the progression of the disease in this model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to differences in protein-coding gene sequences, changes in expression resulting from mutations in regulatory sequences have long been hypothesized to be responsible for phenotypic differences between species. However, unlike comparison of genome sequences, few studies, generally restricted to pairwise comparisons of closely related mammalian species, have assessed between-species differences at the transcriptome level. They reported that gene expression evolves at different rates in various organs and in a pattern that is overall consistent with neutral models of evolution. In the first part of my thesis, I investigated the evolution of gene expression in therian mammals (i.e.7 placental and marsupials), based on microarray data from human, mouse and the gray short-tailed opossum (Monodelphis domestica). In addition to autosomal genes, a special focus was given to the evolution of X-linked genes. The therian X chromosome was recently shown to be younger than previously thought and to harbor a specific gene content (e.g., genes involved in brain or reproductive functions) that is thought to have been shaped by specific sex-related evolutionary forces. Sex chromosomes derive from ordinary autosomes and their differentiation led to the degeneration of the Y chromosome (in mammals) or W chromosome (in birds). Consequently, X- or Z-linked genes differ in gene dose between males and females such that the heterogametic sex has half the X/Z gene dose compared to the ancestral state. To cope with this dosage imbalance, mammals have been reported to have evolved mechanisms of dosage compensation.¦In the first project, I could first show that transcriptomes evolve at different rates in different organs. Out of the five tissues I investigated, the testis is the most rapidly evolving organ at the gene expression level while the brain has the most conserved transcriptome. Second, my analyses revealed that mammalian gene expression evolution is compatible with a neutral model, where the rates of change in gene expression levels is linked to the efficiency of purifying selection in a given lineage, which, in turn, is determined by the long-term effective population size in that lineage. Thus, the rate of DNA sequence evolution, which could be expected to determine the rate of regulatory sequence change, does not seem to be a major determinant of the rate of gene expression evolution. Thus, most gene expression changes seem to be (slightly) deleterious. Finally, X-linked genes seem to have experienced elevated rates of gene expression change during the early stage of X evolution. To further investigate the evolution of mammalian gene expression, we generated an extensive RNA-Seq gene expression dataset for nine mammalian species and a bird. The analyses of this dataset confirmed the patterns previously observed with microarrays and helped to significantly deepen our view on gene expression evolution.¦In a specific project based on these data, I sought to assess in detail patterns of evolution of dosage compensation in amniotes. My analyses revealed the absence of male to female dosage compensation in monotremes and its presence in marsupials and, in addition, confirmed patterns previously described for placental mammals and birds. I then assessed the global level of expression of X/Z chromosomes and contrasted this with its ancestral gene expression levels estimated from orthologous autosomal genes in species with non-homologous sex chromosomes. This analysis revealed a lack of up-regulation for placental mammals, the level of expression of X-linked genes being proportional to gene dose. Interestingly, the ancestral gene expression level was at least partially restored in marsupials as well as in the heterogametic sex of monotremes and birds. Finally, I investigated alternative mechanisms of dosage compensation and found that gene duplication did not seem to be a widespread mechanism to restore the ancestral gene dose. However, I could show that placental mammals have preferentially down-regulated autosomal genes interacting with X-linked genes which underwent gene expression decrease, and thus identified a novel alternative mechanism of dosage compensation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The autosomal recessive forms of limb-girdle muscular dystrophies are encoded by at least five distinct genes. The work performed towards the identification of two of these is summarized in this report. This success illustrates the growing importance of genetics in modern nosology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is possible to distribute the 17 autosomic fragile sites presently known in three categories according to their sensitivity: BrdU-sensitive sites (10q25, 16q22, 17p12), distamycin A-sensitive sites (16q22, 17p12) and folate- and thymidilate-sensitive sites (2q11-q14, 3p14, 6p23, 7p11, 8q22, 9p21, 9q32, 10q23, 11q13, 11q23, 12q13, 16p12, 16q23, 17p12, 20p11). Four fundamental problems are discussed, first the relation between the presence of a fragile site and the phenotype, secondly the incidence of autosomic sites, third the origin of fragility (particularity of DNA structure, defect of the DNA/proteins binding and abnormal arrangement of chromatin, abnormality of the metaphasic scaffold) and fourth the localization of fragile sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Retinitis pigmentosa (RP; MIM 268000) is a hereditary disease characterized by poor night vision and progressive loss of photoreceptors, eventually leading to blindness. This degenerative process primarily affects peripheral vision due to the loss of rods. Autosomal recessive RP (arRP) is clinically and genetically heterogeneous. It has been associated with mutations in different genes, including CRB1 (Crumbs homolog 1). The aim of this study was to determine the causative gene in a Tunisian patient with arRP born to non consanguineous parents.Methods: Four accessible family members were included. They underwent full ophthalmic examination with best corrected Snellen visual acuity, fundus photography and fluoroangiography. Haplotype analyses were used to test linkage in the family to 20 arRP loci, including ABCA4, LRAT, USH2A, RP29, CERKL, CNGA1, CNGB1, CRB1, EYS, RP28, MERTK, NR2E3, PDE6A, PDE6B, RGR, RHO, RLBP1, TULP1. All exons and intron-exon junctions of candidate genes not excluded by haplotype analysis were PCR amplified and directly sequenced.Results: A 39 aged affected member was individualized. Best corrected visual acuity was OR: 20/63, OS: 20/80. Visual loss began at the third decade. Funduscopic examination and FA revealed typical advanced RP changes with bone spicule-shaped pigment deposits in the posterior pole and the mild periphery along with retinal atrophy, narrowing of the vessels and waxy optic discs. Haplotypes analysis revealed homozygosity with microsatellites markers D1S412 and D1S413 on chromosome 1q31.3. These markers flanked the CRB1 gene. Our results excluded linkage of all the other arRP loci/ genes tested. Sequencing of the 12 coding exons and splice sites of CRB1 gene disclosed a homozygous missense mutation in exon 7 at nucleotide c.(2291 G>A), resulting in an Arg to Hist substitution (p.R764H).Conclusions: R764H is a novel mutation associated with CRB1-related arRP. Previously, an R764C mutation was observed. Extending the mutation spectrum of CRB1 with additional families is important for genotype-phenotype correlations.