947 resultados para XML, Schema matching
Resumo:
The supply chain can be a source of competitive advantage for the firm. Simulation is an effective tool for investigating supply chain problems. The three main simulation approaches in the supply chain context are System Dynamics (SD), Discrete Event Simulation (DES) and Agent Based Modelling (ABM). A sample from the literature suggests that whilst SD and ABM have been used to address strategic and planning problems, DES has mainly been used on planning and operational problems., A review of received wisdom suggests that historically, driven by custom and practice, certain simulation techniques have been focused on certain problem types. A theoretical review of the techniques, however, suggests that the scope of their application should be much wider and that supply chain practitioners could benefit from applying them in this broader way.
Resumo:
A method for selecting a suitable subspace for discriminating signal components through an oblique projection is proposed. The selection criterion is based on the consistency principle introduced by Unser and Aldroubi and extended by Elder. An effective implementation of this principle for the purpose of subspace selection is achieved by updating of the dual vectors yielding the corresponding oblique projector. © 2007 IEEE.
Resumo:
Current tools for assessing risks associated with mental-health problems require assessors to make high-level judgements based on clinical experience. This paper describes how new technologies can enhance qualitative research methods to identify lower-level cues underlying these judgements, which can be collected by people without a specialist mental-health background. Content analysis of interviews with 46 multidisciplinary mental-health experts exposed the cues and their interrelationships, which were represented by a mind map using software that stores maps as XML. All 46 mind maps were integrated into a single XML knowledge structure and analysed by a Lisp program to generate quantitative information about the numbers of experts associated with each part of it. The knowledge was refined by the experts, using software developed in Flash to record their collective views within the XML itself. These views specified how the XML should be transformed by XSLT, a technology for rendering XML, which resulted in a validated hierarchical knowledge structure associating patient cues with risks. Changing knowledge elicitation requirements were accommodated by flexible transformations of XML data using XSLT, which also facilitated generation of multiple data-gathering tools suiting different assessment circumstances and levels of mental-health knowledge. © 2007 Informa UK Ltd All rights reserved.
Resumo:
We present modulation instability analysis including azimuthal perturbations of steady-state continuous wave (CW) propagation in multicore-fiber configurations with a central core. In systems with a central core, a steady CW evolution regime requires power-controlled phase matching, which offers interesting spatial-division applications. Our results have general applicability and are relevant to a range of physical and engineering systems, including high-power fiber lasers, optical transmission in multicore fiber, and systems of coupled nonlinear waveguides. © 2013 Optical Society of America.
Resumo:
The software architecture and development consideration for open metadata extraction and processing framework are outlined. Special attention is paid to the aspects of reliability and fault tolerance. Grid infrastructure is shown as useful backend for general-purpose task.
Resumo:
* The research presented here is partially supported by the project KT-DigiCult-Bg (FP6) and by the ICT Agency in Bulgaria.
Resumo:
A novel approach of normal ECG recognition based on scale-space signal representation is proposed. The approach utilizes curvature scale-space signal representation used to match visual objects shapes previously and dynamic programming algorithm for matching CSS representations of ECG signals. Extraction and matching processes are fast and experimental results show that the approach is quite robust for preliminary normal ECG recognition.
Resumo:
In this paper, we propose a new edge-based matching kernel for graphs by using discrete-time quantum walks. To this end, we commence by transforming a graph into a directed line graph. The reasons of using the line graph structure are twofold. First, for a graph, its directed line graph is a dual representation and each vertex of the line graph represents a corresponding edge in the original graph. Second, we show that the discrete-time quantum walk can be seen as a walk on the line graph and the state space of the walk is the vertex set of the line graph, i.e., the state space of the walk is the edges of the original graph. As a result, the directed line graph provides an elegant way of developing new edge-based matching kernel based on discrete-time quantum walks. For a pair of graphs, we compute the h-layer depth-based representation for each vertex of their directed line graphs by computing entropic signatures (computed from discrete-time quantum walks on the line graphs) on the family of K-layer expansion subgraphs rooted at the vertex, i.e., we compute the depth-based representations for edges of the original graphs through their directed line graphs. Based on the new representations, we define an edge-based matching method for the pair of graphs by aligning the h-layer depth-based representations computed through the directed line graphs. The new edge-based matching kernel is thus computed by counting the number of matched vertices identified by the matching method on the directed line graphs. Experiments on standard graph datasets demonstrate the effectiveness of our new kernel.
Resumo:
Many Object recognition techniques perform some flavour of point pattern matching between a model and a scene. Such points are usually selected through a feature detection algorithm that is robust to a class of image transformations and a suitable descriptor is computed over them in order to get a reliable matching. Moreover, some approaches take an additional step by casting the correspondence problem into a matching between graphs defined over feature points. The motivation is that the relational model would add more discriminative power, however the overall effectiveness strongly depends on the ability to build a graph that is stable with respect to both changes in the object appearance and spatial distribution of interest points. In fact, widely used graph-based representations, have shown to suffer some limitations, especially with respect to changes in the Euclidean organization of the feature points. In this paper we introduce a technique to build relational structures over corner points that does not depend on the spatial distribution of the features. © 2012 ICPR Org Committee.
Resumo:
Although people and events that disconfirm observers' expectancies can increase their creativity, sometimes such social schema violations increase observers' rigidity of thought and undermine creative cognition. Here we examined whether individual differences in the extent to which people prefer structure and predictability determine whether social schema violations facilitate or hamper creativity. Participants in Study 1 formed impressions of a schema-inconsistent female mechanic (vs. a schema-consistent male mechanic). Following schema-inconsistent rather than -consistent information, participants low (high) in need for structure showed better (impeded) creative performance. Participants in Study 2 memorized a series of images in which individuals were placed on a schema-inconsistent (vs. consistent) background (e.g., an Eskimo on the desert vs. on a snowy landscape). Following schema-inconsistent imagery, participants low (high) in need for structure increased (decreased) divergent thinking. © 2014 by the Society for Personality and Social Psychology, Inc.
Resumo:
We have proposed a similarity matching method (SMM) to obtain the change of Brillouin frequency shift (BFS), in which the change of BFS can be determined from the frequency difference between detecting spectrum and selected reference spectrum by comparing their similarity. We have also compared three similarity measures in the simulation, which has shown that the correlation coefficient is more accurate to determine the change of BFS. Compared with the other methods of determining the change of BFS, the SMM is more suitable for complex Brillouin spectrum profiles. More precise result and much faster processing speed have been verified in our simulation and experiments. The experimental results have shown that the measurement uncertainty of the BFS has been improved to 0.72 MHz by using the SMM, which is almost one-third of that by using the curve fitting method, and the speed of deriving the BFS change by the SMM is 120 times faster than that by the curve fitting method.
Resumo:
Many studies have attempted to identify the different cognitive components of body representation (BR). Due to methodological issues, the data reported in these studies are often confusing. Here we summarize the fMRI data from previous studies and explore the possibility of a neural segregation between BR supporting actions (body-schema, BS) or not (non-oriented-to-action-body-representation, NA). We performed a general activation likelihood estimation meta-analysis of 59 fMRI experiments and two individual meta-analyses to identify the neural substrates of different BR. Body processing involves a wide network of areas in occipital, parietal, frontal and temporal lobes. NA selectively activates the somatosensory primary cortex and the supramarginal gyrus. BS involves the primary motor area and the right extrastriate body area. Our data suggest that motor information and recognition of body parts are fundamental to build BS. Instead, sensory information and processing of the egocentric perspective are more important for NA. In conclusion, our results strongly support the idea that different and segregated neural substrates are involved in body representations orient or not to actions.
Resumo:
The fabrication precision is one of the most critical challenges to the creation of practical photonic circuits composed of coupled high Q-factor microresonators. While very accurate transient tuning of microresonators based on local heating has been reported, the record precision of permanent resonance positioning achieved by post-processing is still within 1 and 5 GHz. Here we demonstrate two coupled bottle microresonators fabricated at the fiber surface with resonances that are matched with a better than 0.16 GHz precision. This corresponds to a better than 0.17 Å precision in the effective fiber radius variation. The achieved fabrication precision is only limited by the resolution of our optical spectrum analyzer and can be potentially improved by an order of magnitude.
Resumo:
We propose a novel template matching approach for the discrimination of handwritten and machine-printed text. We first pre-process the scanned document images by performing denoising, circles/lines exclusion and word-block level segmentation. We then align and match characters in a flexible sized gallery with the segmented regions, using parallelised normalised cross-correlation. The experimental results over the Pattern Recognition & Image Analysis Research Lab-Natural History Museum (PRImA-NHM) dataset show remarkably high robustness of the algorithm in classifying cluttered, occluded and noisy samples, in addition to those with significant high missing data. The algorithm, which gives 84.0% classification rate with false positive rate 0.16 over the dataset, does not require training samples and generates compelling results as opposed to the training-based approaches, which have used the same benchmark.