848 resultados para Wireless Mesh Networks. IEEE 802.11s. Testbeds. Management


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hoy en día asistimos a un creciente interés por parte de la sociedad hacia el cuidado de la salud. Esta afirmación viene apoyada por dos realidades. Por una parte, el aumento de las prácticas saludables (actividad deportiva, cuidado de la alimentación, etc.). De igual manera, el auge de los dispositivos inteligentes (relojes, móviles o pulseras) capaces de medir distintos parámetros físicos como el pulso cardíaco, el ritmo respiratorio, la distancia recorrida, las calorías consumidas, etc. Combinando ambos factores (interés por el estado de salud y disponibilidad comercial de dispositivos inteligentes) están surgiendo multitud de aplicaciones capaces no solo de controlar el estado actual de salud, también de recomendar al usuario cambios de hábitos que lleven hacia una mejora en su condición física. En este contexto, los llamados dispositivos llevables (weareables) unidos al paradigma de Internet de las cosas (IoT, del inglés Internet of Things) permiten la aparición de nuevos nichos de mercado para aplicaciones que no solo se centran en la mejora de la condición física, ya que van más allá proponiendo soluciones para el cuidado de pacientes enfermos, la vigilancia de niños o ancianos, la defensa y la seguridad, la monitorización de agentes de riesgo (como bomberos o policías) y un largo etcétera de aplicaciones por llegar. El paradigma de IoT se puede desarrollar basándose en las existentes redes de sensores inalámbricos (WSN, del inglés Wireless Sensor Network). La conexión de los ya mencionados dispositivos llevables a estas redes puede facilitar la transición de nuevos usuarios hacia aplicaciones IoT. Pero uno de los problemas intrínsecos a estas redes es su heterogeneidad. En efecto, existen multitud de sistemas operativos, protocolos de comunicación, plataformas de desarrollo, soluciones propietarias, etc. El principal objetivo de esta tesis es realizar aportaciones significativas para solucionar no solo el problema de la heterogeneidad, sino también de dotar de mecanismos de seguridad suficientes para salvaguardad la integridad de los datos intercambiados en este tipo de aplicaciones. Algo de suma importancia ya que los datos médicos y biométricos de los usuarios están protegidos por leyes nacionales y comunitarias. Para lograr dichos objetivos, se comenzó con la realización de un completo estudio del estado del arte en tecnologías relacionadas con el marco de investigación (plataformas y estándares para WSNs e IoT, plataformas de implementación distribuidas, dispositivos llevables y sistemas operativos y lenguajes de programación). Este estudio sirvió para tomar decisiones de diseño fundamentadas en las tres contribuciones principales de esta tesis: un bus de servicios para dispositivos llevables (WDSB, Wearable Device Service Bus) basado en tecnologías ya existentes tales como ESB, WWBAN, WSN e IoT); un protocolo de comunicaciones inter-dominio para dispositivos llevables (WIDP, Wearable Inter-Domain communication Protocol) que integra en una misma solución protocolos capaces de ser implementados en dispositivos de bajas capacidades (como lo son los dispositivos llevables y los que forman parte de WSNs); y finalmente, la tercera contribución relevante es una propuesta de seguridad para WSN basada en la aplicación de dominios de confianza. Aunque las contribuciones aquí recogidas son de aplicación genérica, para su validación se utilizó un escenario concreto de aplicación: una solución para control de parámetros físicos en entornos deportivos, desarrollada dentro del proyecto europeo de investigación “LifeWear”. En este escenario se desplegaron todos los elementos necesarios para validar las contribuciones principales de esta tesis y, además, se realizó una aplicación para dispositivos móviles por parte de uno de los socios del proyecto (lo que contribuyó con una validación externa de la solución). En este escenario se usaron dispositivos llevables tales como un reloj inteligente, un teléfono móvil con sistema operativo Android y un medidor del ritmo cardíaco inalámbrico capaz de obtener distintos parámetros fisiológicos del deportista. Sobre este escenario se realizaron diversas pruebas de validación mediante las cuales se obtuvieron resultados satisfactorios. ABSTRACT Nowadays, society is shifting towards a growing interest and concern on health care. This phenomenon can be acknowledged by two facts: first, the increasing number of people practising some kind of healthy activity (sports, balanced diet, etc.). Secondly, the growing number of commercial wearable smart devices (smartwatches or bands) able to measure physiological parameters such as heart rate, breathing rate, distance or consumed calories. A large number of applications combining both facts are appearing. These applications are not only able to monitor the health status of the user, but also to provide recommendations about routines in order to improve the mentioned health status. In this context, wearable devices merged with the Internet of Things (IoT) paradigm enable the proliferation of new market segments for these health wearablebased applications. Furthermore, these applications can provide solutions for the elderly or baby care, in-hospital or in-home patient monitoring, security and defence fields or an unforeseen number of future applications. The introduced IoT paradigm can be developed with the usage of existing Wireless Sensor Networks (WSNs) by connecting the novel wearable devices to them. In this way, the migration of new users and actors to the IoT environment will be eased. However, a major issue appears in this environment: heterogeneity. In fact, there is a large number of operating systems, hardware platforms, communication and application protocols or programming languages, each of them with unique features. The main objective of this thesis is defining and implementing a solution for the intelligent service management in wearable and ubiquitous devices so as to solve the heterogeneity issues that are presented when dealing with interoperability and interconnectivity of devices and software of different nature. Additionally, a security schema based on trust domains is proposed as a solution to the privacy problems arising when private data (e.g., biomedical parameters or user identification) is broadcasted in a wireless network. The proposal has been made after a comprehensive state-of-the-art analysis, and includes the design of a Wearable Device Service Bus (WDSB) including the technologies collected in the requirement analysis (ESB, WWBAN, WSN and IoT). Applications are able to access the WSN services regardless of the platform and operating system where they are running. Besides, this proposal also includes the design of a Wearable Inter-Domain communication Protocols set (WIDP) which integrates lightweight protocols suitable to be used in low-capacities devices (REST, JSON, AMQP, CoAP, etc...). Furthermore, a security solution for service management based on a trustworthy domains model to deploy security services in WSNs has been designed. Although the proposal is a generic framework for applications based on services provided by wearable devices, an application scenario for testing purposes has been included. In this validation scenario it has been presented an autonomous physical condition performance system, based on a WSN, bringing the possibility to include several elements in an IoT scenario: a smartwatch, a physiological monitoring device and a smartphone. In summary, the general objective of this thesis is solving the heterogeneity and security challenges arising when developing applications for WSNs and wearable devices. As it has been presented in the thesis, the solution proposed has been successfully validated in a real scenario and the obtained results were satisfactory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivated by the increasing demand and challenges of video streaming in this thesis, we investigate methods by which the quality of the video can be improved. We utilise overlay networks that have been created by implemented relay nodes to produce path diversity, and show through analytical and simulation models for which environments path diversity can improve the packet loss probability. We take the simulation and analytical models further by implementing a real overlay network on top of Planetlab, and show that when the network conditions remain constant the video quality received by the client can be improved. In addition, we show that in the environments where path diversity improves the video quality forward error correction can be used to further enhance the quality. We then investigate the effect of IEEE 802.11e Wireless LAN standard with quality of service enabled on the video quality received by a wireless client. We find that assigning all the video to a single class outperforms a cross class assignment scheme proposed by other researchers. The issue of virtual contention at the access point is also examined. We increase the intelligence of our relay nodes and enable them to cache video, in order to maximise the usefulness of these caches. For this purpose, we introduce a measure, called the PSNR profit, and present an optimal caching method for achieving the maximum PSNR profit at the relay nodes where partitioned video contents are stored and provide an enhanced quality for the client. We also show that the optimised cache the degradation in the video quality received by the client becomes more graceful than the non-optimised system when the network experiences packet loss or is congested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – The main purpose of this paper is to analyze knowledge management in service networks. It analyzes the knowledge management process and identifies related challenges. The authors take a strategic management approach instead of a more technology-oriented approach, since it is believed that managerial problems still remain after technological problems are solved. Design/methodology/approach – The paper explores the literature on the topic of knowledge management as well as the resource (or knowledge) based view of the firm. It offers conceptual insights and provides possible solutions for knowledge management problems. Findings – The paper discusses several possible solutions for managing knowledge processes in knowledge-intensive service networks. Solutions for knowledge identification/generation, knowledge application, knowledge combination/transfer and supporting the evolution of tacit network knowledge include personal and technological aspects, as well as organizational and cultural elements. Practical implications – In a complex environment, knowledge management and network management become crucial for business success. It is the task of network management to establish routines, and to build and regularly refresh meta-knowledge about the competencies and abilities that exist within the network. It is suggested that each network partner should be rated according to the contribution to the network knowledge base. Based on this rating, a particular network partner is a member of a certain knowledge club, meaning that the partner has access to a particular level of network knowledge. Such an established routine provides strong incentives to add knowledge to the network's knowledge base Originality/value – This paper is a first attempt to outline the problems of knowledge management in knowledge-intensive service networks and, by so doing, to introduce strategic management reasoning to the discussion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed source coding (DSC) has recently been considered as an efficient approach to data compression in wireless sensor networks (WSN). Using this coding method multiple sensor nodes compress their correlated observations without inter-node communications. Therefore energy and bandwidth can be efficiently saved. In this paper, we investigate a randombinning based DSC scheme for remote source estimation in WSN and its performance of estimated signal to distortion ratio (SDR). With the introduction of a detailed power consumption model for wireless sensor communications, we quantitatively analyze the overall network energy consumption of the DSC scheme. We further propose a novel energy-aware transmission protocol for the DSC scheme, which flexibly optimizes the DSC performance in terms of either SDR or energy consumption, by adapting the source coding and transmission parameters to the network conditions. Simulations validate the energy efficiency of the proposed adaptive transmission protocol. © 2007 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is sponsored by the Ministry of Education and Research of the Republic of Bulgaria in the framework of project No 105 “Multimedia Packet Switching Networks Planning with Quality of Service and Traffic Management”.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In wireless sensor networks where nodes are powered by batteries, it is critical to prolong the network lifetime by minimizing the energy consumption of each node. In this paper, the cooperative multiple-input-multiple-output (MIMO) and data-aggregation techniques are jointly adopted to reduce the energy consumption per bit in wireless sensor networks by reducing the amount of data for transmission and better using network resources through cooperative communication. For this purpose, we derive a new energy model that considers the correlation between data generated by nodes and the distance between them for a cluster-based sensor network by employing the combined techniques. Using this model, the effect of the cluster size on the average energy consumption per node can be analyzed. It is shown that the energy efficiency of the network can significantly be enhanced in cooperative MIMO systems with data aggregation, compared with either cooperative MIMO systems without data aggregation or data-aggregation systems without cooperative MIMO, if sensor nodes are properly clusterized. Both centralized and distributed data-aggregation schemes for the cooperating nodes to exchange and compress their data are also proposed and appraised, which lead to diverse impacts of data correlation on the energy performance of the integrated cooperative MIMO and data-aggregation systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Wireless Sensor Network (WSN) consists of distributed devices in an area in order to monitor physical variables such as temperature, pressure, vibration, motion and environmental conditions in places where wired networks would be difficult or impractical to implement, for example, industrial applications of difficult access, monitoring and control of oil wells on-shore or off-shore, monitoring of large areas of agricultural and animal farming, among others. To be viable, a WSN should have important requirements such as low cost, low latency, and especially low power consumption. However, to ensure these requirements, these networks suffer from limited resources, and eventually being used in hostile environments, leading to high failure rates, such as segmented routing, mes sage loss, reducing efficiency, and compromising the entire network, inclusive. This work aims to present the FTE-LEACH, a fault tolerant and energy efficient routing protocol that maintains efficiency in communication and dissemination of data.This protocol was developed based on the IEEE 802.15.4 standard and suitable for industrial networks with limited energy resources

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spread of wireless networks and growing proliferation of mobile devices require the development of mobility control mechanisms to support the different demands of traffic in different network conditions. A major obstacle to developing this kind of technology is the complexity involved in handling all the information about the large number of Moving Objects (MO), as well as the entire signaling overhead required to manage these procedures in the network. Despite several initiatives have been proposed by the scientific community to address this issue they have not proved to be effective since they depend on the particular request of the MO that is responsible for triggering the mobility process. Moreover, they are often only guided by wireless medium statistics, such as Received Signal Strength Indicator (RSSI) of the candidate Point of Attachment (PoA). Thus, this work seeks to develop, evaluate and validate a sophisticated communication infrastructure for Wireless Networking for Moving Objects (WiNeMO) systems by making use of the flexibility provided by the Software-Defined Networking (SDN) paradigm, where network functions are easily and efficiently deployed by integrating OpenFlow and IEEE 802.21 standards. For purposes of benchmarking, the analysis was conducted in the control and data planes aspects, which demonstrate that the proposal significantly outperforms typical IPbased SDN and QoS-enabled capabilities, by allowing the network to handle the multimedia traffic with optimal Quality of Service (QoS) transport and acceptable Quality of Experience (QoE) over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cryptography is the main form to obtain security in any network. Even in networks with great energy consumption restrictions, processing and memory limitations, as the Wireless Sensors Networks (WSN), this is no different. Aiming to improve the cryptography performance, security and the lifetime of these networks, we propose a new cryptographic algorithm developed through the Genetic Programming (GP) techniques. For the development of the cryptographic algorithm’s fitness criteria, established by the genetic GP, nine new cryptographic algorithms were tested: AES, Blowfish, DES, RC6, Skipjack, Twofish, T-DES, XTEA and XXTEA. Starting from these tests, fitness functions was build taking into account the execution time, occupied memory space, maximum deviation, irregular deviation and correlation coefficient. After obtaining the genetic GP, the CRYSEED and CRYSEED2 was created, algorithms for the 8-bits devices, optimized for WSNs, i.e., with low complexity, few memory consumption and good security for sensing and instrumentation applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cryptography is the main form to obtain security in any network. Even in networks with great energy consumption restrictions, processing and memory limitations, as the Wireless Sensors Networks (WSN), this is no different. Aiming to improve the cryptography performance, security and the lifetime of these networks, we propose a new cryptographic algorithm developed through the Genetic Programming (GP) techniques. For the development of the cryptographic algorithm’s fitness criteria, established by the genetic GP, nine new cryptographic algorithms were tested: AES, Blowfish, DES, RC6, Skipjack, Twofish, T-DES, XTEA and XXTEA. Starting from these tests, fitness functions was build taking into account the execution time, occupied memory space, maximum deviation, irregular deviation and correlation coefficient. After obtaining the genetic GP, the CRYSEED and CRYSEED2 was created, algorithms for the 8-bits devices, optimized for WSNs, i.e., with low complexity, few memory consumption and good security for sensing and instrumentation applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing demand for Internet data traffic in wireless broadband access networks requires both the development of efficient, novel wireless broadband access technologies and the allocation of new spectrum bands for that purpose. The introduction of a great number of small cells in cellular networks allied to the complimentary adoption of Wireless Local Area Network (WLAN) technologies in unlicensed spectrum is one of the most promising concepts to attend this demand. One alternative is the aggregation of Industrial, Science and Medical (ISM) unlicensed spectrum to licensed bands, using wireless networks defined by Institute of Electrical and Electronics Engineers (IEEE) and Third Generation Partnership Project (3GPP). While IEEE 802.11 (Wi-Fi) networks are aggregated to Long Term Evolution (LTE) small cells via LTE / WLAN Aggregation (LWA), in proposals like Unlicensed LTE (LTE-U) and LWA the LTE air interface itself is used for transmission on the unlicensed band. Wi-Fi technology is widespread and operates in the same 5 GHz ISM spectrum bands as the LTE proposals, which may bring performance decrease due to the coexistence of both technologies in the same spectrum bands. Besides, there is the need to improve Wi-Fi operation to support scenarios with a large number of neighbor Overlapping Basic Subscriber Set (OBSS) networks, with a large number of Wi-Fi nodes (i.e. dense deployments). It is long known that the overall Wi-Fi performance falls sharply with the increase of Wi-Fi nodes sharing the channel, therefore there is the need for introducing mechanisms to increase its spectral efficiency. This work is dedicated to the study of coexistence between different wireless broadband access systems operating in the same unlicensed spectrum bands, and how to solve the coexistence problems via distributed coordination mechanisms. The problem of coexistence between different networks (i.e. LTE and Wi-Fi) and the problem of coexistence between different networks of the same technology (i.e. multiple Wi-Fi OBSSs) is analyzed both qualitatively and quantitatively via system-level simulations, and the main issues to be faced are identified from these results. From that, distributed coordination mechanisms are proposed and evaluated via system-level simulations, both for the inter-technology coexistence problem and intra-technology coexistence problem. Results indicate that the proposed solutions provide significant gains when compare to the situation without distributed coordination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advances in low power micro-processors, wireless networks and embedded systems have raised the need to utilize the significant resources of mobile devices. These devices for example, smart phones, tablets, laptops, wearables, and sensors are gaining enormous processing power, storage capacity and wireless bandwidth. In addition, the advancement in wireless mobile technology has created a new communication paradigm via which a wireless network can be created without any priori infrastructure called mobile ad hoc network (MANET). While progress is being made towards improving the efficiencies of mobile devices and reliability of wireless mobile networks, the mobile technology is continuously facing the challenges of un-predictable disconnections, dynamic mobility and the heterogeneity of routing protocols. Hence, the traditional wired, wireless routing protocols are not suitable for MANET due to its unique dynamic ad hoc nature. Due to the reason, the research community has developed and is busy developing protocols for routing in MANET to cope with the challenges of MANET. However, there are no single generic ad hoc routing protocols available so far, which can address all the basic challenges of MANET as mentioned before. Thus this diverse range of ever growing routing protocols has created barriers for mobile nodes of different MANET taxonomies to intercommunicate and hence wasting a huge amount of valuable resources. To provide interaction between heterogeneous MANETs, the routing protocols require conversion of packets, meta-model and their behavioural capabilities. Here, the fundamental challenge is to understand the packet level message format, meta-model and behaviour of different routing protocols, which are significantly different for different MANET Taxonomies. To overcome the above mentioned issues, this thesis proposes an Interoperable Framework for heterogeneous MANETs called IF-MANET. The framework hides the complexities of heterogeneous routing protocols and provides a homogeneous layer for seamless communication between these routing protocols. The framework creates a unique Ontology for MANET routing protocols and a Message Translator to semantically compare the packets and generates the missing fields using the rules defined in the Ontology. Hence, the translation between an existing as well as newly arriving routing protocols will be achieved dynamically and on-the-fly. To discover a route for the delivery of packets across heterogeneous MANET taxonomies, the IF-MANET creates a special Gateway node to provide cluster based inter-domain routing. The IF-MANET framework can be used to develop different middleware applications. For example: Mobile grid computing that could potentially utilise huge amounts of aggregated data collected from heterogeneous mobile devices. Disaster & crises management applications can be created to provide on-the-fly infrastructure-less emergency communication across organisations by utilising different MANET taxonomies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a cooperative relaying network in which a source communicates with a group of users in the presence of one eavesdropper. We assume that there are no source-user links and the group of users receive only retransmitted signal from the relay. Whereas, the eavesdropper receives both the original and retransmitted signals. Under these assumptions, we exploit the user selection technique to enhance the secure performance. We first find the optimal power allocation strategy when the source has the full channel state information (CSI) of all links. We then evaluate the security level through: i) ergodic secrecy rate and ii) secrecy outage probability when having only the statistical knowledge of CSIs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The continuous technology evaluation is benefiting our lives to a great extent. The evolution of Internet of things and deployment of wireless sensor networks is making it possible to have more connectivity between people and devices used extensively in our daily lives. Almost every discipline of daily life including health sector, transportation, agriculture etc. is benefiting from these technologies. There is a great potential of research and refinement of health sector as the current system is very often dependent on manual evaluations conducted by the clinicians. There is no automatic system for patient health monitoring and assessment which results to incomplete and less reliable heath information. Internet of things has a great potential to benefit health care applications by automated and remote assessment, monitoring and identification of diseases. Acute pain is the main cause of people visiting to hospitals. An automatic pain detection system based on internet of things with wireless devices can make the assessment and redemption significantly more efficient. The contribution of this research work is proposing pain assessment method based on physiological parameters. The physiological parameters chosen for this study are heart rate, electrocardiography, breathing rate and galvanic skin response. As a first step, the relation between these physiological parameters and acute pain experienced by the test persons is evaluated. The electrocardiography data collected from the test persons is analyzed to extract interbeat intervals. This evaluation clearly demonstrates specific patterns and trends in these parameters as a consequence of pain. This parametric behavior is then used to assess and identify the pain intensity by implementing machine learning algorithms. Support vector machines are used for classifying these parameters influenced by different pain intensities and classification results are achieved. The classification results with good accuracy rates between two and three levels of pain intensities shows clear indication of pain and the feasibility of this pain assessment method. An improved approach on the basis of this research work can be implemented by using both physiological parameters and electromyography data of facial muscles for classification.