758 resultados para Weight training--Physiological aspects.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Effects of strength and power training on neuromuscular adaptations and jumping movement pattern and performance. J Strength Cond Res 26(12): 3335-3344, 2012-This study aimed at comparing the effects of strength and power training (ST and PT) regimens on neuromuscular adaptations and changes on vertical jump performance, kinetics, and kinematics parameters. Forty physically active men (178.2 +/- 7.0 cm; 75.1 +/- 8.6 kg; 23.6 +/- 3.5 years) with at least 2 years of ST experience were assigned to an ST (n = 14), a PT (n = 14), or a control group (C; n = 12). The training programs were performed during 8 weeks, 3 times per week. Dynamic and isometric maximum strength, cross-sectional area, and muscle activation were assessed before and after the experimental period. Squat jump (SJ) and countermovement jump (CMJ) performance, kinetics, and kinematics parameters were also assessed. Dynamic maximum strength increased similarly (p < 0.05) for the ST (22.8%) and PT (16.6%) groups. The maximum voluntary isometric contraction increased for the ST and PT groups (p < 0.05) in the posttraining assessments. There was a main time effect for muscle fiber cross-sectional area (p < 0.05), but there were no changes in muscle activation. The SJ height increased, after ST and PT, because of a faster concentric phase and a higher rate of force development (p < 0.05). The CMJ height increased only after PT (p < 0.05), but there were no significant changes in its kinetics and kinematics parameters. In conclusion, neuromuscular adaptations were similar between the training groups. The PT seemed more effective than the ST in increasing jumping performance, but neither the ST nor the PT was able to affect the SJ and the CMJ movement pattern (e.g., timing and sequencing of joint extension initiation).
Resumo:
Background and Purpose: Becoming proficient in laparoscopic surgery is dependent on the acquisition of specialized skills that can only be obtained from specific training. This training could be achieved in various ways using inanimate models, animal models, or live patient surgery-each with its own pros and cons. Currently, there are substantial data that support the benefits of animal model training in the initial learning of laparoscopy. Nevertheless, whether these benefits extent themselves to moderately experienced surgeons is uncertain. The purpose of this study was to determine if training using a porcine model results in a quantifiable gain in laparoscopic skills for moderately experienced laparoscopic surgeons. Materials and Methods: Six urologists with some laparoscopic experience were asked to perform a radical nephrectomy weekly for 10 weeks in a porcine model. The procedures were recorded, and surgical performance was assessed by two experienced laparoscopic surgeons using a previously published surgical performance assessment tool. The obtained data were then submitted to statistical analysis. Results: With training, blood loss was reduced approximately 45% when comparing the averages of the first and last surgical procedures (P = 0.006). Depth perception showed an improvement close to 35% (P = 0.041), and dexterity showed an improvement close to 25% (P = 0.011). Total operative time showed trends of improvement, although it was not significant (P = 0.158). Autonomy, efficiency, and tissue handling were the only aspects that did not show any noteworthy change (P = 0.202, P = 0.677, and P = 0.456, respectively). Conclusions: These findings suggest that there are quantifiable gains in laparoscopic skills obtained from training in an animal model. Our results suggest that these benefits also extend to more advanced stages of the learning curve, but it is unclear how far along the learning curve training with animal models provides a clear benefit for the performance of laparoscopic procedures. Future studies are necessary to confirm these findings and better understand the impact of this learning tool on surgical practice.
Resumo:
Objective: To investigate the relationship between working at night and increased body weight in nursing. In addition, we evaluated the differences in the proportion of variables sociodemographic, work and health, according to the work shift and their association with body mass index. Methods: Based on questionnaires, we obtained data from 446 nursing professionals about aspects of their job, health and lifestyle. We performed linear and logistic regression analysis. Results: Working at night is associated with a weight gain greater than (beta=0.24 kg/m(2)) working during the day (beta=0.15 kg/m(2)), as well as with aging (beta=0.16 kg/m(2)) and duration of working in nursing (beta=0.18 kg/m(2)). Night workers have a higher educational level, have been working for more years in nursing and also in the current shift, do not have diabetes and have reported longer sleep than day workers. There are also a higher number of smokers among the night workers than day workers. Logistic regression analysis also showed the more time to work in nursing and as an assistant was more likely to develop overweight/obesity. Conclusion: Working at the night contributes to more weight gain than the day shift, aging and duration of working in nursing.
Resumo:
The present research examined the effects of a cognitive training program combined with psychoeducational intervention for diabetic elderly patients. Specifically, it aimed at assessing the effects of an eight-session cognitive training and educational program in diabetic elderly individuals and investigating changes in their awareness about specific aspects of diabetes. The final sample consisted of 34 individuals-19 in the experimental group (EG) and 15 in the control group (CG), all residing in the eastern region of the city of Sao Paulo. The protocol included clinical and sociodemographic questions; the Diabetes Attitudes Questionnaire (ATT-19); Diabetes Knowledge Scale (DKN-A); Mini Mental State Examination (MMSE); Verbal Fluency-animal category (VF); Geriatric Depression Scale (GDS); Short Cognitive Performance Test (SKT); and the Rivermead Behavioral Memory Test (RBMT). Results pointed to a significant difference between the two groups for the ATT-19, DKN, and SKT-memory and SKT-total, and a marginally significant difference for the RBMT history in the posttest. As for the remaining cognitive variables, no changes were observed. Retest effects were not observed in the CG. We concluded that cognitive training combined with psychoeducational intervention in diabetic elderly individuals may be effective in producing cognitive gains as well as attitude and knowledge improvement concerning diabetes mellitus (DM).
Resumo:
This study aimed to develop an equipment and system of resistance exercise (RE), based on squat-type exercise for rodents, with control of training variables. We developed an operant conditioning system composed of sound, light and feeding devices that allowed optimized RE performance by the animal. With this system, it is not necessary to impose fasting or electric shock for the animal to perform the task proposed (muscle contraction). Furthermore, it is possible to perform muscle function tests in vivo within the context of the exercise proposed and control variables such as intensity, volume (sets and repetitions), and exercise session length, rest interval between sets and repetitions, and concentric strength. Based on the experiments conducted, we demonstrated that the model proposed is able to perform more specific control of other RE variables, especially rest interval between sets and repetitions, and encourages the animal to exercise through short-term energy restriction and "disturbing" stimulus that do not promote alterations in body weight. Therefore, despite experimental limitations, we believe that this RE apparatus is closer to the physiological context observed in humans.
Resumo:
The purpose of this study was to determine the physiological, anthropometric, performance, and nutritional characteristics of the Brazil Canoe Polo National Team. Ten male canoe polo athletes (age 26.7 +/- 4.1 years) performed a battery of tests including assessments of anthropometric parameters, upper-body anaerobic power (Wingate), muscular strength, aerobic power, and nutritional profile. In addition, we characterized heart rate and plasma lactate responses and the temporal pattern of the effort/recovery during a simulated canoe polo match. The main results are as follows: body fat, 12.3 +/- 4.0%; upper-body peak and mean power, 6.8 +/- 0.5 and 4.7 +/- 0.4 W . kg(-1), respectively; 1-RM bench press, 99.1 +/- 11.7 kg; peak oxygen uptake, 44.3 +/- 5.8 mL . kg(-1) . min(-1); total energy intake, 42.8 +/- 8.6 kcal . kg(-1); protein, carbohydrate, and fat intakes, 1.9 +/- 0.1, 5.0 +/- 1.5, and 1.7 +/- 0.4 g . kg(-1), respectively; mean heart rate, 146 +/- 11 beats . min(-1); plasma lactate, 5.7 +/- 3.8 mmol . L-1 at half-time and 4.6 +/- 2.2 mmol . L-1 at the end of the match; effort time (relative to total match time), 93.1 +/- 3.0%; number of sprints, 9.6 +/- 4.4. The results of this study will assist coaches, trainers, and nutritionists in developing more adequate training programmes and dietary interventions for canoe polo athletes.
Resumo:
Exercise training (ET) is an important intervention for chronic diseases such as diabetes mellitus (DM). However, it is not known whether previous exercise training intervention alters the physiological and medical complications of these diseases. We investigated the effects of previous ET on the progression of renal disease and cardiovascular autonomic control in rats with streptozotocin (STZ)-induced DM. Male Wistar rats were divided into five groups. All groups were followed for 15 weeks. Trained control and trained diabetic rats underwent 10 weeks of exercise training, whereas previously trained diabetic rats underwent 14 weeks of exercise training. Renal function, proteinuria, renal sympathetic nerve activity (RSNA) and the echocardiographic parameters autonomic modulation and baroreflex sensitivity (BRS) were evaluated. In the previously trained group, the urinary albumin/creatinine ratio was reduced compared with the sedentary diabetic and trained diabetic groups (p < 0.05). Additionally, RSNA was normalized in the trained diabetic and previously trained diabetic animals (p < 0.05). The ejection fraction was increased in the previously trained diabetic animals compared with the diabetic and trained diabetic groups (p < 0.05), and the myocardial performance index was improved in the previously trained diabetic group compared with the diabetic and trained diabetic groups (p < 0.05). In addition, the previously trained rats had improved heart rate variability and BRS in the tachycardic response and bradycardic response in relation to the diabetic group (p < 0.05). This study demonstrates that previous ET improves the functional damage that affects DM. Additionally, our findings suggest that the development of renal and cardiac dysfunction can be minimized by 4 weeks of ET before the induction of DM by STZ.
Resumo:
Unstable shoes have been designed to promote "natural instability" and during walking they should simulate barefoot gait, enhancing muscle activity and, thus, attributing an advantage over regular tennis shoes. Recent studies showed that, after special training on the appropriate walking pattern, the use of the Masai Barefoot Technology (MBT) shoe increases muscle activation during walking. Our study presents a comparison of muscle activity as well as horizontal and vertical forces during gait with the MBT, a standard tennis shoe and barefoot walking of healthy individuals without previous training. These variables were compared in 25 female subjects and gait conditions were compared using ANOVA repeated measures (effect size:0.25). Walking with the MBT shoe in this non-instructed condition produced higher vertical forces (first vertical peak and weight acceptance rate) than walking with a standard shoe or walking barefoot, which suggests an increase in the loads received by the musculoskeletal system, especially at heel strike. Walking with the MBT shoe did not increase muscle activity when compared to walking with the standard shoe. The barefoot condition was more effective than the MBT shoe at enhancing muscle activation. Therefore, in healthy individuals, no advantage was found in using the MBT over a standard tennis shoe without a special training period. Further studies using the MBT without any instruction over a longer period are needed to evaluate if the higher loads observed in the present study would return to their baseline values after a period of adaptation, and if the muscle activity would increase over time. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Chaves E.P., Oliveira S.C.R., Araujo L.P.F., Oliveira A.S., Miglino M.A., Abreu-Silva A.L., Melo F.A. & Sousa A.L. 2012. Morphological aspects of the ovaries of turtle Kinosternon scorpioides raised in captivity. Pesquisa Veterinaria Brasileira 32(7):667-671. Departamento das Clinicas, Curso de Medicina Veterinaria, Universidade Estadual do Maranhao, Cidade Universitaria Paulo VI, Tirirical, Sao Luis, MA 65050-150, Brazil. E-mail: alana@elo.com.br The swear turtle "jurara" (Kinosternon scorpioides) is a mud turtle of the Amazon region exposed to disordering capture in the rural areas of Maranhao, Brazil. Despite its popularity in these areas, little meaningful information regarding the reproductive morphology is currently available, fact that impedes the adoption of policies for preservation of the species. To obtain more information, we studied the ovarian morphology adult jurara females kept in captivity by morphological and morphometric analysis in the dry and rainy season. The results revealed that all females were sexually mature and were in a vitellogenic period. The ovaries are two irregular structures composed by follicles in different stages of development (primary, secondary and tertiary) scattered in a stroma of loose connective highly vascularized tissue. The ovary weight was 6.25+/-4.23g and 2.27+/-1.42g, for the right and left one respectively. The gonadosomatic indexes were 2.06% for the dry season and 1.79% for the rainy season. The average of the follicles was 29.83 units per ovary. Microscopically, the mature ovaries revealed a basal layer composed by four cellular layers: the inner and outer theca, stratum granulosum with perivitelline membrane and zona radiata with vitelline membrane. No significant differences were observed in the ovaries either in the dry or wet period.
Resumo:
Zavanela, PM, Crewther, BT, Lodo, L, Florindo, AA, Miyabara, EH, and Aoki, MS. Health and fitness benefits of a resistance training intervention performed in the workplace. J Strength Cond Res 26(3): 811-817, 2012-This study examined the effects of a workplace-based resistance training intervention on different health-, fitness-, and work-related measures in untrained men (bus drivers). The subjects were recruited from a bus company and divided into a training (n = 48) and control (n = 48) groups after initial prescreening. The training group performed a 24-week resistance training program, whereas the control group maintained their normal daily activities. Each group was assessed for body composition, blood pressure (BP), pain incidence, muscular endurance, and flexibility before and after the 24-week period. Work absenteeism was also recorded during this period and after a 12-week follow-up phase. In general, no body composition changes were identified in either group. In the training group, a significant reduction in BP and pain incidence, along with improvements in muscle endurance and flexibility were seen after 24 weeks (p < 0.05). There were no changes in these parameters in the control group, and the between-group differences were all significant (p < 0.05). A reduction in worker absenteeism rate was also noted in the training (vs. control) group during both the interventional and follow-up periods (p < 0.05). In conclusion, it was found that a periodized resistance training intervention performed within the workplace improved different aspects of health and fitness in untrained men, thereby potentially providing other work-related benefits. Thus, both employers and employees may benefit from the setup, promotion, and support of a work-based physical activity program involving resistance training.
Resumo:
Cunha TF, Moreira JB, Paixao NA, Campos JC, Monteiro AW, Bacurau AV, Bueno CR Jr., Ferreira JC, Brum PC. Aerobic exercise training upregulates skeletal muscle calpain and ubiquitin-proteasome systems in healthy mice. J Appl Physiol 112: 1839-1846, 2012. First published March 29, 2012; doi:10.1152/japplphysiol.00346.2011.-Aerobic exercise training (AET) is an important mechanical stimulus that modulates skeletal muscle protein turnover, leading to structural rearrangement. Since the ubiquitin-proteasome system (UPS) and calpain system are major proteolytic pathways involved in protein turnover, we aimed to investigate the effects of intensity-controlled AET on the skeletal muscle UPS and calpain system and their association to training-induced structural adaptations. Long-lasting effects of AET were studied in C57BL/6J mice after 2 or 8 wk of AET. Plantaris cross-sectional area (CSA) and capillarization were assessed by myosin ATPase staining. mRNA and protein expression levels of main components of the UPS and calpain system were evaluated in plantaris by real-time PCR and Western immunoblotting, respectively. No proteolytic system activation was observed after 2 wk of AET. Eight weeks of AET resulted in improved running capacity, plantaris capillarization, and CSA. Muscle RING finger-1 mRNA expression was increased in 8-wk-trained mice. Accordingly, elevated 26S proteasome activity was observed in the 8-wk-trained group, without accumulation of ubiquitinated or carbonylated proteins. In addition, calpain abundance was increased by 8 wk of AET, whereas no difference was observed in its endogenous inhibitor calpastatin. Taken together, our findings indicate that skeletal muscle enhancements, as evidenced by increased running capacity, plantaris capillarization, and CSA, occurred in spite of the upregulated UPS and calpain system, suggesting that overactivation of skeletal muscle proteolytic systems is not restricted to atrophying states. Our data provide evidence for the contribution of the UPS and calpain system to metabolic turnover of myofibrillar proteins and skeletal muscle adaptations to AET.
Resumo:
Calegari VC, Abrantes JL, Silveira LR, Paula FM, Costa JM Jr, Rafacho A, Velloso LA, Carneiro EM, Bosqueiro JR, Boschero AC, Zoppi CC. Endurance training stimulates growth and survival pathways and the redox balance in rat pancreatic islets. J Appl Physiol 112: 711-718, 2012. First published December 15, 2011; doi:10.1152/japplphysiol.00318.2011.-Endurance training has been shown to increase pancreatic beta-cell function and mass. However, whether exercise modulates beta-cell growth and survival pathways signaling is not completely understood. This study investigated the effects of exercise on growth and apoptotic markers levels in rat pancreatic islets. Male Wistar rats were randomly assigned to 8-wk endurance training or to a sedentary control group. After that, pancreatic islets were isolated; gene expression and the total content and phosphorylation of several proteins related to growth and apoptotic pathways as well as the main antioxidant enzymes were determined by real-time polymerase chain reaction and Western blot analysis, respectively. Reactive oxygen species (ROS) production was measured by fluorescence. Endurance training increased the time to reach fatigue by 50%. Endurance training resulted in increased protein phosphorylation content of AKT (75%), AKT substrate (AS160; 100%), mTOR (60%), p70s6k (90%), and ERK1/2 (50%), compared with islets from control group. Catalase protein content was 50% higher, whereas ROS production was 49 and 77% lower in islets from trained rats under basal and stimulating glucose conditions, respectively. Bcl-2 mRNA and protein levels increased by 46 and 100%, respectively. Bax and cleaved caspase-3 protein contents were reduced by 25 and 50% in islets from trained rats, respectively. In conclusion, these results demonstrate that endurance training favors the beta-cell growth and survival by activating AKT and ERK1/2 pathways, enhancing antioxidant capacity, and reducing ROS production and apoptotic proteins content.
Resumo:
Bearing in mind that cancer cachexia is associated with chronic systemic inflammation and that endurance training has been adopted as a nonpharmacological anti-inflammatory strategy, we examined the effect of 8 weeks of moderate intensity exercise upon the balance of anti-and pro-inflammatory cytokines in 2 different depots of white adipose tissue in cachectic tumour-bearing (Walker-256 carcinosarcoma) rats. Animals were assigned to a sedentary control (SC), sedentary tumour-bearing (ST), sedentary pair-fed (SPF) or exercise control (EC), exercise tumour-bearing (ET), and exercise pair-fed (EPF) group. Trained rats ran on a treadmill (60% VO(2)max) 60 min/day, 5 days/week, for 8 weeks. The retroperitoneal (RPAT) and mesenteric (MEAT) adipose pads were excised and the mRNA (RT-PCR) and protein (ELISA) expression of IL-1 beta, IL-6, TNF-alpha, and IL-10 were evaluated. The number of infiltrating monocytes in the adipose tissue was increased in cachectic rats. TNF-alpha mRNA in MEAT was increased in the cachectic animals (p < 0.05) in relation to SC. RPAT protein expression of all studied cytokines was increased in cachectic animals in relation to SC and SPF (p < 0.05). In this pad, IL-10/TNF-alpha ratio was reduced in the cachectic animals in comparison with SC (p < 0.05) indicating inflammation. Exercise training improved IL-10/TNF-alpha ratio and induced a reduction of the infiltrating monocytes both in MEAT and RPAT (p < 0.05), when compared with ST. We conclude that cachexia is associated with inflammation of white adipose tissue and that exercise training prevents this effect in the MEAT, and partially in RPAT.