932 resultados para Weakly Compact Sets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to relate macroscopic random motion (described e.g. by Langevin-type theories) to microscopic dynamics, we have undertaken the derivation of a Fokker-Planck-type equation from first microscopic principles. Both subsystems are subject to an external force field. Explicit expressions for the diffusion and drift coefficients are obtained, in terms of the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let T be a compact disjointness preserving linear operator from C0(X) into C0(Y), where X and Y are locally compact Hausdorff spaces. We show that T can be represented as a norm convergent countable sum of disjoint rank one operators. More precisely, T = Snd ?hn for a (possibly finite) sequence {xn }n of distinct points in X and a norm null sequence {hn }n of mutually disjoint functions in C0(Y). Moreover, we develop a graph theoretic method to describe the spectrum of such an operator

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particle-in-cell simulations of relativistic, weakly magnetized collisionless shocks show that particles can gain energy by repeatedly crossing the shock front. This requires scattering off self-generated small length-scale magnetic fluctuations. The radiative signature of this first-order Fermi acceleration mechanism is important for models of both the prompt and afterglow emission in gamma-ray bursts and depends on the strength parameter a = lambda e/delta B/mc(2) of the fluctuations (lambda is the length scale and vertical bar delta B vertical bar is the magnitude of the fluctuations). For electrons (and positrons), acceleration saturates when the radiative losses produced by the scattering cannot be compensated by the energy gained on crossing the shock. We show that this sets an upper limit on both the electron Lorentz factor gamma <10(6) (n/1 cm(-3))(-1/6)(-1/6) and on the energy of the photons radiated during the scattering process h omega(max) <40Max(a, 1)(n/1 cm(-3))(1/6)(-1/6) eV, where n is the number density of the plasma and (gamma) over bar is the thermal Lorentz factor of the downstream plasma, provided a <a(crit) similar to 10(6). This rules out "jitter" radiation on self-excited fluctuations with a <I as a source of gamma rays, although high-energy photons might still be produced when the jitter photons are upscattered in an analog of the synchrotron self-Compton process. In fluctuations with a > 1, radiation is generated by the standard synchrotron mechanism, and the maximum photon energy rises linearly with a, until saturating at 70 MeV, when a = a(crit).

Relevância:

20.00% 20.00%

Publicador:

Resumo:



Email
Print
Request Permissions











A compact V-band active power detector using Infineon 0.35 µm SiGe HBT process (fT/fmax =170/250 GHz) is described. The total chip area is only 0.35×0.8 mm2 including all pads. This design exhibits a dynamic range larger than 20 dB over the frequency range from 55 GHz to 67 GHz. It also offers a simple and low-power application potential as an envelop detector in multi-Gbps high data rate demodulators for OOK/ASK etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of accurate structural/thermal numerical models of complex systems, such as aircraft fuselage barrels, is often limited and determined by the smallest scales that need to be modelled. The development of reduced order models of the smallest scales and consequently their integration with higher level models can be a way to minimise the bottle neck present, while still having efficient, robust and accurate numerical models. In this paper a methodology on how to develop compact thermal fluid models (CTFMs) for compartments where mixed convection regimes are present is demonstrated. Detailed numerical simulations (CFD) have been developed for an aircraft crown compartment and validated against experimental data obtained from a 1:1 scale compartment rig. The crown compartment is defined as the confined area between the upper fuselage and the passenger cabin in a single aisle commercial aircraft. CFD results were utilised to extract average quantities (temperature and heat fluxes) and characteristic parameters (heat transfer coefficients) to generate CTFMs. The CTFMs have then been compared with the results obtained from the detailed models showing average errors for temperature predictions lower than 5%. This error can be deemed acceptable when compared to the nominal experimental error associated with the thermocouple measurements.

The CTFMs methodology developed allows to generate accurate reduced order models where accuracy is restricted to the region of Boundary Conditions applied. This limitation arises from the sensitivity of the internal flow structures to the applied boundary condition set. CTFMs thus generated can be then integrated in complex numerical modelling of whole fuselage sections.

Further steps in the development of an exhaustive methodology would be the implementation of a logic ruled based approach to extract directly from the CFD simulations numbers and positions of the nodes for the CTFM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From our linkage study of Irish families with a high density of schizophrenia, we have previously reported evidence for susceptibility genes in regions 5q21-31, 6p24-21, 8p22-21, and 10p15-p11. In this report, we describe the cumulative results from independent genome scans of three a priori random subsets of 90 families each, and from multipoint analysis of all 270 families in ten regions. Of these ten regions, three (13q32, 18p11-q11, and 18q22-23) did not generate scores above the empirical baseline pairwise scan results, and one (6q13-26) generated a weak signal. Six other regions produced more positive pairwise and multipoint results. They showed the following maximum multipoint H-LOD (heterogeneity LOD) and NPL scores: 2p14-13: 0.89 (P = 0.06) and 2.08 (P = 0.02), 4q24-32: 1.84 (P = 0.007) and 1.67 (P = 0.03), 5q21-31: 2.88 (P= 0.0007), and 2.65 (P = 0.002), 6p25-24: 2.13 (P = 0.005) and 3.59 (P = 0.0005), 6p23: 2.42 (P = 0.001) and 3.07 (P = 0.001), 8p22-21: 1.57 (P = 0.01) and 2.56 (P = 0.005), 10p15-11: 2.04 (P = 0.005) and 1.78 (P = 0.03). The degree of 'internal replication' across subsets differed, with 5q, 6p, and 8p being most consistent and 2p and 10p being least consistent. On 6p, the data suggested the presence of two susceptibility genes, in 6p25-24 and 6p23-22. Very few families were positive on more than one region, and little correlation between regions was evident, suggesting substantial locus heterogeneity. The levels of statistical significance were modest, as expected from loci contributing to complex traits. However, our internal replications, when considered along with the positive results obtained in multiple other samples, suggests that most of these six regions are likely to contain genes that influence liability to schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact, cleavable acylal dimethacrylate cross-linker, 1,1-ethylenediol dimethacrylate (EDDMA), was synthesized from the anhydrous iron(III) chloride-catalyzed reaction between methacrylic anhydride and acetaldehyde. The ability of EDDMA to act as cross-linker was demonstrated by using it for the preparation of one neat cross-linker network, four star polymers of methyl methacrylate (MMA), and four randomly cross-linked MMA polymer networks using group transfer polymerization (GTP). For comparison, the corresponding polymer structures based on the commercially available ethylene glycol dimethacrylate (EGDMA) cross-linker (isomer of EDDMA) were also prepared via GTR The number of arms of the EDDMA-based star polymers was lower than that of the corresponding EGDMA polymers, whereas the degrees of swelling in tetrahydrofuran of the EDDMA-based MMA networks were higher than those of their EGDMA-based counterparts. Although none of the EDDMA-containing polymers could be cleanly hydrolyzed under basic or acidic conditions, they could be thermolyzed at 200 degrees C within 1 day giving lower molecular weight products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivation: To date, Gene Set Analysis (GSA) approaches primarily focus on identifying differentially expressed gene sets (pathways). Methods for identifying differentially coexpressed pathways also exist but are mostly based on aggregated pairwise correlations, or other pairwise measures of coexpression. Instead, we propose Gene Sets Net Correlations Analysis (GSNCA), a multivariate differential coexpression test that accounts for the complete correlation structure between genes.

Results: In GSNCA, weight factors are assigned to genes in proportion to the genes' cross-correlations (intergene correlations). The problem of finding the weight vectors is formulated as an eigenvector problem with a unique solution. GSNCA tests the null hypothesis that for a gene set there is no difference in the weight vectors of the genes between two conditions. In simulation studies and the analyses of experimental data, we demonstrate that GSNCA, indeed, captures changes in the structure of genes' cross-correlations rather than differences in the averaged pairwise correlations. Thus, GSNCA infers differences in coexpression networks, however, bypassing method-dependent steps of network inference. As an additional result from GSNCA, we define hub genes as genes with the largest weights and show that these genes correspond frequently to major and specific pathway regulators, as well as to genes that are most affected by the biological difference between two conditions. In summary, GSNCA is a new approach for the analysis of differentially coexpressed pathways that also evaluates the importance of the genes in the pathways, thus providing unique information that may result in the generation of novel biological hypotheses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel design for a compact gamma-ray spectrometer is presented. The proposed system allows for spectroscopy of high-flux multi-MeV gamma-ray beams with MeV energy resolution in a compact design. In its basic configuration, the spectrometer exploits conversion of gamma-rays into electrons via Compton scattering in a low-Z material. The scattered electron population is then spectrally resolved using a magnetic spectrometer. The detector is shown to be effective for gamma-ray energies between 3 and 20 MeV. The main properties of the spectrometer are confirmed by Monte Carlo simulations.