838 resultados para Wavelet transform analysis
Resumo:
In the present study a versatile and efficient adsorbent with high adsorption capacity for adsorption of Congo red dye in aqueous solution at ambient temperature without adjusting any pH is presented over the Ag modified calcium hydroxyapatite (CaHAp). CaHAp and Ag-doped CaHAp materials were synthesized using facile aqueous precipitation method. The physico-chemical properties of the materials were determined by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Transmission electron microscopy (TEM), UV-Visible spectroscopy, N-2 physisorption and acidity was determined by n-butylamine titration and pyridine adsorption methods. XRD analysis confirmed all adsorbents exhibit hexagonal CaHAp structure with P6(3)/m space group. TEM analysis confirms the rod like morphology of the adsorbents and the average length of the rods were in the range of 40-45 nm. Pyridine adsorption results indicate increase in number of Lewis acid sites with Ag doping in CaHAp. Adsorption capacity of CaHAp was found increased with Ag content in the adsorbents. Ag (10): CaHAp adsorbent showed superior adsorption performance among all the adsorbents for various concentrations of Congo red (CR) dye in aqueous solutions. The amount of CR dye adsorbed on Ag (10): CaHAp was found to be 49.89-267.81 mg g(-1) for 50-300 ppm in aqueous solution. A good correlation between adsorption capacity and acidity of the adsorbents was observed. The adsorption kinetic data of adsorbents fitted well with pseudo second-order kinetic model with correlation coefficients ranged from 0.998 to 0.999. The equilibrium adsorption data was found to best fit to the Langmuir adsorption isotherm model. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Sepsis is a life threatening condition resulting from a high burden of infection. It is a major health care problem and associated with inflammation, organ dysfunction and significant mortality. However, proper understanding and delineating the changes that occur during this complex condition remains a challenge. A comparative study involving intra-peritoneal injection of BALB/c mice with Salmonella Typhimurium (infection), lipopolysaccharide (endotoxic shock) or thioglycollate (sterile peritonitis) was performed. The changes in organs and sera were profiled using immunological assays and Fourier Transform Infrared (FTIR) micro-spectroscopy. There is a rapid rise in inflammatory cytokines accompanied with lowering of temperature, respiratory rate and glucose amounts in mice injected with S. Typhimurium or lipopolysaccharide. FTIR identifies distinct changes in liver and sera: decrease in glycogen and protein/lipid ratio and increase in DNA and cholesteryl esters. These changes were distinct from the pattern observed in mice treated with thioglycollate and the differences in the data obtained between the three models are discussed. The combination of FTIR spectroscopy and other biomarkers will be valuable in monitoring molecular changes during sepsis. GRAPHICS] Intra-peritoneal infection with high dose of Salmonella Typhimurium leads to rapid increase in inflammatory cytokines, e.g. Tnf alpha (A). FTIR analysis of liver (B) and sera (C) identifies several metabolic changes: glycogen, protein/lipid, cholesteryl esters and DNA.
Resumo:
Image and video analysis requires rich features that can characterize various aspects of visual information. These rich features are typically extracted from the pixel values of the images and videos, which require huge amount of computation and seldom useful for real-time analysis. On the contrary, the compressed domain analysis offers relevant information pertaining to the visual content in the form of transform coefficients, motion vectors, quantization steps, coded block patterns with minimal computational burden. The quantum of work done in compressed domain is relatively much less compared to pixel domain. This paper aims to survey various video analysis efforts published during the last decade across the spectrum of video compression standards. In this survey, we have included only the analysis part, excluding the processing aspect of compressed domain. This analysis spans through various computer vision applications such as moving object segmentation, human action recognition, indexing, retrieval, face detection, video classification and object tracking in compressed videos.
Resumo:
In a recent paper Leong-Huang:2010 {Journal of Applied Statistics 37, 215–233} proposed a wavelet-correlation-based approach to test for cointegration between two time series. However, correlation and cointegration are two different concepts even when wavelet analysis is used. It is known that statistics based on nonstationary integrated variables have non-standard asymptotic distributions. However, wavelet analysis offsets the integrating order of nonstationary series so that traditional asymptotics on stationary variables suffices to ascertain the statistical properties of wavelet-based statistics. Based on this, this note shows that wavelet correlations cannot be used as a test of cointegration.
Resumo:
Signal processing techniques play important roles in the design of digital communication systems. These include information manipulation, transmitter signal processing, channel estimation, channel equalization and receiver signal processing. By interacting with communication theory and system implementing technologies, signal processing specialists develop efficient schemes for various communication problems by wisely exploiting various mathematical tools such as analysis, probability theory, matrix theory, optimization theory, and many others. In recent years, researchers realized that multiple-input multiple-output (MIMO) channel models are applicable to a wide range of different physical communications channels. Using the elegant matrix-vector notations, many MIMO transceiver (including the precoder and equalizer) design problems can be solved by matrix and optimization theory. Furthermore, the researchers showed that the majorization theory and matrix decompositions, such as singular value decomposition (SVD), geometric mean decomposition (GMD) and generalized triangular decomposition (GTD), provide unified frameworks for solving many of the point-to-point MIMO transceiver design problems.
In this thesis, we consider the transceiver design problems for linear time invariant (LTI) flat MIMO channels, linear time-varying narrowband MIMO channels, flat MIMO broadcast channels, and doubly selective scalar channels. Additionally, the channel estimation problem is also considered. The main contributions of this dissertation are the development of new matrix decompositions, and the uses of the matrix decompositions and majorization theory toward the practical transmit-receive scheme designs for transceiver optimization problems. Elegant solutions are obtained, novel transceiver structures are developed, ingenious algorithms are proposed, and performance analyses are derived.
The first part of the thesis focuses on transceiver design with LTI flat MIMO channels. We propose a novel matrix decomposition which decomposes a complex matrix as a product of several sets of semi-unitary matrices and upper triangular matrices in an iterative manner. The complexity of the new decomposition, generalized geometric mean decomposition (GGMD), is always less than or equal to that of geometric mean decomposition (GMD). The optimal GGMD parameters which yield the minimal complexity are derived. Based on the channel state information (CSI) at both the transmitter (CSIT) and receiver (CSIR), GGMD is used to design a butterfly structured decision feedback equalizer (DFE) MIMO transceiver which achieves the minimum average mean square error (MSE) under the total transmit power constraint. A novel iterative receiving detection algorithm for the specific receiver is also proposed. For the application to cyclic prefix (CP) systems in which the SVD of the equivalent channel matrix can be easily computed, the proposed GGMD transceiver has K/log_2(K) times complexity advantage over the GMD transceiver, where K is the number of data symbols per data block and is a power of 2. The performance analysis shows that the GGMD DFE transceiver can convert a MIMO channel into a set of parallel subchannels with the same bias and signal to interference plus noise ratios (SINRs). Hence, the average bit rate error (BER) is automatically minimized without the need for bit allocation. Moreover, the proposed transceiver can achieve the channel capacity simply by applying independent scalar Gaussian codes of the same rate at subchannels.
In the second part of the thesis, we focus on MIMO transceiver design for slowly time-varying MIMO channels with zero-forcing or MMSE criterion. Even though the GGMD/GMD DFE transceivers work for slowly time-varying MIMO channels by exploiting the instantaneous CSI at both ends, their performance is by no means optimal since the temporal diversity of the time-varying channels is not exploited. Based on the GTD, we develop space-time GTD (ST-GTD) for the decomposition of linear time-varying flat MIMO channels. Under the assumption that CSIT, CSIR and channel prediction are available, by using the proposed ST-GTD, we develop space-time geometric mean decomposition (ST-GMD) DFE transceivers under the zero-forcing or MMSE criterion. Under perfect channel prediction, the new system minimizes both the average MSE at the detector in each space-time (ST) block (which consists of several coherence blocks), and the average per ST-block BER in the moderate high SNR region. Moreover, the ST-GMD DFE transceiver designed under an MMSE criterion maximizes Gaussian mutual information over the equivalent channel seen by each ST-block. In general, the newly proposed transceivers perform better than the GGMD-based systems since the super-imposed temporal precoder is able to exploit the temporal diversity of time-varying channels. For practical applications, a novel ST-GTD based system which does not require channel prediction but shares the same asymptotic BER performance with the ST-GMD DFE transceiver is also proposed.
The third part of the thesis considers two quality of service (QoS) transceiver design problems for flat MIMO broadcast channels. The first one is the power minimization problem (min-power) with a total bitrate constraint and per-stream BER constraints. The second problem is the rate maximization problem (max-rate) with a total transmit power constraint and per-stream BER constraints. Exploiting a particular class of joint triangularization (JT), we are able to jointly optimize the bit allocation and the broadcast DFE transceiver for the min-power and max-rate problems. The resulting optimal designs are called the minimum power JT broadcast DFE transceiver (MPJT) and maximum rate JT broadcast DFE transceiver (MRJT), respectively. In addition to the optimal designs, two suboptimal designs based on QR decomposition are proposed. They are realizable for arbitrary number of users.
Finally, we investigate the design of a discrete Fourier transform (DFT) modulated filterbank transceiver (DFT-FBT) with LTV scalar channels. For both cases with known LTV channels and unknown wide sense stationary uncorrelated scattering (WSSUS) statistical channels, we show how to optimize the transmitting and receiving prototypes of a DFT-FBT such that the SINR at the receiver is maximized. Also, a novel pilot-aided subspace channel estimation algorithm is proposed for the orthogonal frequency division multiplexing (OFDM) systems with quasi-stationary multi-path Rayleigh fading channels. Using the concept of a difference co-array, the new technique can construct M^2 co-pilots from M physical pilot tones with alternating pilot placement. Subspace methods, such as MUSIC and ESPRIT, can be used to estimate the multipath delays and the number of identifiable paths is up to O(M^2), theoretically. With the delay information, a MMSE estimator for frequency response is derived. It is shown through simulations that the proposed method outperforms the conventional subspace channel estimator when the number of multipaths is greater than or equal to the number of physical pilots minus one.
Resumo:
The connections between convexity and submodularity are explored, for purposes of minimizing and learning submodular set functions.
First, we develop a novel method for minimizing a particular class of submodular functions, which can be expressed as a sum of concave functions composed with modular functions. The basic algorithm uses an accelerated first order method applied to a smoothed version of its convex extension. The smoothing algorithm is particularly novel as it allows us to treat general concave potentials without needing to construct a piecewise linear approximation as with graph-based techniques.
Second, we derive the general conditions under which it is possible to find a minimizer of a submodular function via a convex problem. This provides a framework for developing submodular minimization algorithms. The framework is then used to develop several algorithms that can be run in a distributed fashion. This is particularly useful for applications where the submodular objective function consists of a sum of many terms, each term dependent on a small part of a large data set.
Lastly, we approach the problem of learning set functions from an unorthodox perspective---sparse reconstruction. We demonstrate an explicit connection between the problem of learning set functions from random evaluations and that of sparse signals. Based on the observation that the Fourier transform for set functions satisfies exactly the conditions needed for sparse reconstruction algorithms to work, we examine some different function classes under which uniform reconstruction is possible.
Resumo:
Raman spectroscopy on single, living epithelial cells captured in a laser trap is shown to have diagnostic power over colorectal cancer. This new single-cell technology comprises three major components: primary culture processing of human tissue samples to produce single-cell suspensions, Raman detection on singly trapped cells, and diagnoses of the cells by artificial neural network classifications. it is compared with DNA flow cytometry for similarities and differences. Its advantages over tissue Raman spectroscopy are also discussed. In the actual construction of a diagnostic model for colorectal cancer, real patient data were taken to generate a training set of 320 Raman spectra and, a test set of 80. By incorporating outlier corrections to a conventional binary neural classifier, our network accomplished significantly better predictions than logistic regressions, with sensitivity improved from 77.5% to 86.3% and specificity improved from 81.3% to 86.3% for the training set and moderate improvements for the test set. Most important, the network approach enables a sensitivity map analysis to quantitate the relevance of each Raman band to the normal-to-cancer transform at the cell level. Our technique has direct clinic applications for diagnosing cancers and basic science potential in the study of cell dynamics of carcinogenesis. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Raman spectroscopy on single, living epithelial cells captured in a laser trap is shown to have diagnostic power over colorectal cancer. This new single-cell technology comprises three major components: primary culture processing of human tissue samples to produce single-cell suspensions, Raman detection on singly trapped cells, and diagnoses of the cells by artificial neural network classifications. it is compared with DNA flow cytometry for similarities and differences. Its advantages over tissue Raman spectroscopy are also discussed. In the actual construction of a diagnostic model for colorectal cancer, real patient data were taken to generate a training set of 320 Raman spectra and, a test set of 80. By incorporating outlier corrections to a conventional binary neural classifier, our network accomplished significantly better predictions than logistic regressions, with sensitivity improved from 77.5% to 86.3% and specificity improved from 81.3% to 86.3% for the training set and moderate improvements for the test set. Most important, the network approach enables a sensitivity map analysis to quantitate the relevance of each Raman band to the normal-to-cancer transform at the cell level. Our technique has direct clinic applications for diagnosing cancers and basic science potential in the study of cell dynamics of carcinogenesis. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We explore the use of the Radon-Wigner transform, which is associated with the fractional Fourier transform of the pupil function, for determining the point spread function (PSF) of an incoherant defocused optical system. Then we introduce these phase-space tools to analyse the wavefront coding imaging system. It is shown that the shape of the PSF for such a system is highly invarient to the defocous-related aberrations except for a lateral shift. The optical transfer function of this system is also investigated briefly from a new understanding of ambiguity function.
Resumo:
Talbot effect of a grating with different flaws is analyzed with the finite-difference time-domain (FDTD) method. The FDTD method can show the exact near-field distribution of different flaws in a high-density grating, which is impossible to obtain with the conventional Fourier transform method. The numerical results indicate that if a grating is perfect, its Talbot imaging should also be perfect; if the grating is distorted, its Talbot imaging would also be distorted. Furthermore, we can evaluate high density gratings by detecting the near-field distribution.