947 resultados para Water-storage
Resumo:
Ocean Drilling Program inorganic geochemistry procedures routinely overlook more than 99% of the sediment column. Present and past biogeochemical reactions alter the sediment record; however, most of these reaction zones are bypassed by the normal methods where samples are collected every 30 m. A new approach to increase resolution was introduced during Leg 119. Ten milliliters of sediment provided interstitial-water samples for ammonia, silica, sulfate, magnesium, and calcium analyses. The new method introduced some systematic differences in concentrations, as well as some decrease in precision. A number of advantages, however, may warrant using the method in some instances. In cases where routine interstitial-water data showed anomalous results, core sections were retrieved from the storage facility and resampled. The new high-resolution procedure was used to provide water samples in cases were water contents were low and routine squeezing could not recover pore water.
Resumo:
We use a 27 year long time series of repeated transient tracer observations to investigate the evolution of the ventilation time scales and the related content of anthropogenic carbon (Cant) in deep and bottom water in the Weddell Sea. This time series consists of chlorofluorocarbon (CFC) observations from 1984 to 2008 together with first combined CFC and sulphur hexafluoride (SF6) measurements from 2010/2011 along the Prime Meridian in the Antarctic Ocean and across the Weddell Sea. Applying the Transit Time Distribution (TTD) method we find that all deep water masses in the Weddell Sea have been continually growing older and getting less ventilated during the last 27 years. The decline of the ventilation rate of Weddell Sea Bottom Water (WSBW) and Weddell Sea Deep Water (WSDW) along the Prime Meridian is in the order of 15-21%; the Warm Deep Water (WDW) ventilation rate declined much faster by 33%. About 88-94% of the age increase in WSBW near its source regions (1.8-2.4 years per year) is explained by the age increase of WDW (4.5 years per year). As a consequence of the aging, the Cant increase in the deep and bottom water formed in the Weddell Sea slowed down by 14-21% over the period of observations.
Resumo:
The summer water balance of a typical Siberian polygonal tundra catchment is investigated in order to identify the spatial and temporal dynamics of its main hydrological processes. The results show that, besides precipitation and evapotranspiration, lateral flow considerably influences the site-specific hydrological conditions. The prominent microtopography of the polygonal tundra strongly controls lateral flow and storage behaviour of the investigated catchment. Intact rims of low-centred polygons build hydrological barriers, which release storage water later in summer than polygons with degraded rims and troughs above degraded ice wedges. The barrier function of rims is strongly controlled by soil thaw, which opens new subsurface flow paths and increases subsurface hydrological connectivity. Therefore, soil thaw dynamics determine the magnitude and timing of subsurface outflow and the redistribution of storage within the catchment. Hydraulic conductivities in the elevated polygonal rims sharply decrease with the transition from organic to mineral layers. This interface causes a rapid shallow subsurface drainage of rainwater towards the depressed polygon centres and troughs. The re-release of storage water from the centres through deeper and less conductive layers helps maintain a high water table in the surface drainage network of troughs throughout the summer.
Resumo:
Although ponds make up roughly half of the total area of surface water in permafrost landscapes, their relevance to carbon dioxide emissions on a landscape scale has, to date, remained largely unknown. We have therefore investigated the inflows and outflows of dissolved organic and inorganic carbon from lakes, ponds, and outlets on Samoylov Island, in the Lena Delta of northeastern Siberia in September 2008, together with their carbon dioxide emissions. Outgassing of carbon dioxide (CO2) from these ponds and lakes, which cover 25% of Samoylov Island, was found to account for between 74 and 81% of the calculated net landscape-scale CO2 emissions of 0.2-1.1 g C/m**2/d during September 2008, of which 28-43% was from ponds and 27-46% from lakes. The lateral export of dissolved carbon was negligible compared to the gaseous emissions due to the small volumes of runoff. The concentrations of dissolved inorganic carbon in the ponds were found to triple during freezeback, highlighting their importance for temporary carbon storage between the time of carbon production and its emission as CO2. If ponds are ignored the total summer emissions of CO2-C from water bodies of the islands within the entire Lena Delta (0.7-1.3 Tg) are underestimated by between 35 and 62%.