952 resultados para Waqf--Bosnia and Herzegovina--Sarajevo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Australian mosquitoes from which Japanese encephalitis virus (JEV) has been recovered (Culex annulirostris, Culex gelidus, and Aedes vigilax) were assessed for their ability to be infected with the ChimeriVax-JE vaccine, with yellow fever vaccine virus 17D (YF 17D) from which the backbone of ChimeriVax-JE vaccine is derived and with JEV-Nakayama. None of the mosquitoes became infected after being fed orally with 6.1 log(10) plaque-forming units (PFU)/mL of ChimeriVax-JE vaccine, which is greater than the peak viremia in vaccinees (mean peak viremia = 4.8 PFU/mL, range = 0-30 PFU/mL of 0.9 days mean duration, range = 0-11 days). Some members of all three species of mosquito became infected when fed on JEV-Nakayama, but only Ae. vigilax was infected when fed on YF 17D. The results suggest that none of these three species of mosquito are likely to set up secondary cycles of transmission of ChimeriVax-JE in Australia after feeding on a viremic vaccinee.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal transformations of natural calcium oxalate dihydrate known in mineralogy as weddellite have been undertaken using a combination of Raman microscopy and infrared emission spectroscopy. The vibrational spectroscopic data was complimented with high resolution thermogravimetric analysis combined with evolved gas mass spectrometry. TG–MS identified three mass loss steps at 114, 422 and 592 °C. In the first mass loss step water is evolved only, in the second and third steps carbon dioxide is evolved. The combination of Raman microscopy and a thermal stage clearly identifies the changes in the molecular structure with thermal treatment. Weddellite is the phase in the temperature range up to the pre-dehydration temperature of 97 °C. At this temperature, the phase formed is whewellite (calcium oxalate monohydrate) and above 114 °C the phase is the anhydrous calcium oxalate. Above 422 °C, calcium carbonate is formed. Infrared emission spectroscopy shows that this mineral decomposes at around 650 °C. Changes in the position and intensity of the C=O and C---C stretching vibrations in the Raman spectra indicate the temperature range at which these phase changes occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of Raman spectroscopy to the study of the copper chloride minerals nantokite, eriochalcite and claringbullite has enabled the vibrational modes for the CuCl, CuOH and CuOH2 to be determined. Nantokite is characterised by bands at 205 and 155 cm-1 attributed to the transverse and longitudinal optic vibrations. Nantokite also has an intense band at 463 cm-1, eriochalcite at 405 and 390 cm-1 and claringbullite at 511 cm-1. These bands are attributed to CuO stretching modes. Water librational bands at around 672 cm-1 for eriochalcite have been identified and hydroxyl deformation modes of claringbullite at 970, 906 and 815 cm-1 are observed. Spectra of the three minerals are so characteristically different that the minerals are readily identified by Raman spectroscopy. The minerals are often determined in copper corrosion products by X-ray diffraction. Raman spectroscopy offers a rapid, in-situ technique for the identification of these corrosion products.