990 resultados para WEEVILS COLEOPTERA
Resumo:
The impact of cowpea variety on the response of cowpea bruchid, Callosobruchus maculatus, to malathion was investigated. The interaction of six cowpea varieties (Adamawa Brown, Ife BPC, Ife Brown, Lilongwe, Ntcheu and NCRI-L25) with the geographical strains of C. maculatus (Brazil and Cameroon), temperature (23, 25, 27 C) and insecticide concentration were considered. Cowpea variety (V) had an unpredictable effect on C. maculatus response to malathion. Bruchid populations produced by Ife BPC were the most susceptible to malathion while those yielded by NCRI-L25 were the most tolerant. Regardless of the cowpea variety, the Brazil strain showed higher tolerance than the Cameroon strain. There was significant effect of temperature (T) and insecticide concentration (C) on malathion tolerance in both strains (S). Likewise, there was significant impact of all two-way interactions on cowpea bruchid tolerance except V x C. Significant three-way interactions on C. maculatus tolerance to malathion was only observed in S T V and S T C. The predictability of changing one of the factors on the susceptibility of C. maculatus to insecticide was very low. This study suggests a need to take the insecticide tolerance of insect populations produced by novel varieties into account during plant breeding in addition to factors such as yield and resistance to insect and disease attack.
Resumo:
BACKGROUND: Bruchid beetles, Callosobruchus species, are serious pests of economically important grain legumes; their activity in stores is often controlled by use of synthetic insecticides. Esterases are known to be involved in insecticide resistance in insects. However, there is dearth of information on esterase activity in the genus Callosobruchus. In this study we investigated the effect of species, geographical strain and food type on the variation of acetylcholinesterase (AChE) activity and its inhibition by malaoxon (malathion metabolite) using an in vitro spectrophotometric method. RESULT: AChE activity varied significantly among species and strains and also among legume type used for rearing them. Generally irrespective of species, strain or food type, the higher the AChE activity of a population, the higher its inhibition by malaoxon. C. chinensis had the highest AChE activity of the species studied and in the presence of malaoxon it had the lowest remaining AChE activity, while C. rhodesianus retained the highest activity. CONCLUSION: A firsthand knowledge of AChE activity in regional Callosobruchus in line with the prevailing food types should be of utmost importance to grain legume breeders, researchers on plant materials for bruchid control and pesticide manufacturer/applicators for a robust integrated management of these bruchids.
Resumo:
Predicting how insect crop pests will respond to global climate change is an important part of increasing crop production for future food security, and will increasingly rely on empirically based evidence. The effects of atmospheric composition, especially elevated carbon dioxide (eCO(2)), on insect herbivores have been well studied, but this research has focussed almost exclusively on aboveground insects. However, responses of root-feeding insects to eCO(2) are unlikely to mirror these trends because of fundamental differences between aboveground and belowground habitats. Moreover, changes in secondary metabolites and defensive responses to insect attack under eCO(2) conditions are largely unexplored for root herbivore interactions. This study investigated how eCO(2) (700 mu mol mol-1) affected a root-feeding herbivore via changes to plant growth and concentrations of carbon (C), nitrogen (N) and phenolics. This study used the root-feeding vine weevil, Otiorhynchus sulcatus and the perennial crop, Ribes nigrum. Weevil populations decreased by 33% and body mass decreased by 23% (from 7.2 to 5.4 mg) in eCO(2). Root biomass decreased by 16% in eCO(2), which was strongly correlated with weevil performance. While root N concentrations fell by 8%, there were no significant effects of eCO(2) on root C and N concentrations. Weevils caused a sink in plants, resulting in 8-12% decreases in leaf C concentration following herbivory. There was an interactive effect of CO(2) and root herbivory on root phenolic concentrations, whereby weevils induced an increase at ambient CO(2), suggestive of defensive response, but caused a decrease under eCO(2). Contrary to predictions, there was a positive relationship between root phenolics and weevil performance. We conclude that impaired root-growth underpinned the negative effects of eCO(2) on vine weevils and speculate that the plant's failure to mount a defensive response at eCO(2) may have intensified these negative effects.
Resumo:
Insect pests that have a root-feeding larval stage often cause the most sustained damage to plants because their attrition remains largely unseen, preventing early diagnosis and treatment. Characterising movement and dispersal patterns of subterranean insects is inherently difficult due to the difficulty in observing their behaviour. Our understanding of dispersal and movement patterns of soil-dwelling insects is therefore limited compared to above ground insect pests and tends to focus on vertical movements within the soil profile or assessments of coarse movement patterns taken from soil core measurements in the field. The objective of this study was to assess how the dispersal behaviour of the clover root weevil (CRW), Sitona lepidus larvae was affected by differing proportions of host (clover) and non-host (grass) plants under different soil water contents (SWC). This was undertaken in experimental mini-swards that allowed us to control plant community structure and soil water content. CRW larval survival was not affected either by white clover content or planting pattern or SWC in either experiment; however, lower clover composition in the sward resulted in CRW larvae dispersing further from where they hatched. Because survival was the same regardless of clover density, the proportion of infested plants was highest in sward boxes with the fewest clover plants (i.e. the low host plant density). Thus, there is potential for clover plants over a larger area to be colonised when the clover content of the sward is low.
Resumo:
Natural anti-parasitic compounds in plants such as condensed tannins (CT) have anthelmintic properties against a range of gastrointestinal nematodes, but for other helminths such effects are unexplored. The aim of this study was to assess the effects of CT from three different plant extracts in a model system employing the rat tapeworm, Hymenolepis diminuta, in its intermediate host, Tenebrio molitor. An in vitro study examined infectivity of H. diminuta cysticercoids (excystation success) isolated from infected beetles exposed to different concentrations of CT extracts from pine bark (PB) (Pinus sps), hazelnut pericarp (HN) (Corylus avellana) or white clover flowers (WC) (Trifolium repens), in comparison with the anthelmintic drug praziquantel (positive control). In the in vitro study, praziquantel and CT from all three plant extracts had dose-dependent inhibitory effects on cysticercoid excystation. The HN extract was most effective at inhibiting excystation, followed by PB and WC. An in vivo study was carried out on infected beetles (measured as cysticercoid establishment) fed different doses of PB, HN and praziquantel. There was a highly significant inhibitory effect of HN on cysticercoid development (p = 0.0002). Overall, CT showed a promising anti-cestodal effect against the metacestode stage of H. diminuta.
Resumo:
An account of the discovery of a dermestid beetle new to Britain, Anthrenus (A.) angustefasciatus (Ganglebauer), is described. Three individuals were found on Oxeye daisy at Holme Green, Berkshire in May 2014. A brief description of the features separating A. angustefasciatus from A. pimpinellae (F.) is given. Morphological measurements of the specimens were taken and compared with similar measurements of A. angustefasciatus from the Mediterranean region. The possible modes of entry into the country are discussed along with the likelihood of finding further populations of A. angustefasciatus occurring in Britain.
Resumo:
When carrying out experiments on the production of the edible mushroom Pleurotus sajor-caju in the Laboratory of Edible Mushrooms, Universidade Federal de Lavras, Lavras, Brazil, in the second half of 2007, the presence of beetles later identified as belonging to the species Mycotretus apicalis was verified. This is the first recorded instance of this insect in cultures of P. sajor-caju in Brazil. The larvae and adults of this insect feed on the fruiting bodies of commercial harvests, resulting in reduction in mushroom quality. To provide evaluation of the injuries caused by these insects, substrates colonized by P. sajor-caju were infested with 4, 8, 16, 32 and 64 insects per block of substrate being the qualitative and quantitative losses then noted. Despite the lack of an observed decrease in biological efficiency, the injuries caused by these insects affected the commercial quality of the mushrooms, which may result in economic losses. The results showed that infestations of 32 insects per 0.8 kg of substrate led to a depreciation in the prices of mushrooms meant to be sold.
Resumo:
Larvae of Zabrotes subfasciatus secrete alpha-amylases that are insensitive to the alpha-amylase inhibitor found in seeds of Phaseolus vulgaris. By analyzing amylase activities during larval development on P. vulgaris, we detected activity of the constitutive amylase and the two inducible amylase isoforms at all stages. When larvae were transferred from the non alpha-amylase inhibitor containing seeds of Vigna unguiculata to P. vulgaris, the inducible alpha-amylases were expressed at the same level as in control larvae fed on P. vulgaris. Interestingly, when larvae were transferred from seeds of P. vulgaris to those of V. unguiculata, inducible alpha-amylases continued to be expressed at a level similar to that found in control larvae fed P. vulgaris continuously. When 10-day-old larvae were removed from seeds of V. unguiculata and transferred into capsules containing flour of P. vulgaris cotyledons, and thus maintained until completing 17 days ( age when the larvae stopped feeding), we could detect higher activity of the inducible alpha-amylases. However, when larvae of the same age were transferred from P. vulgaris into capsules containing flour of V. unguiculata, the inducible alpha-amylases remained up-regulated. These results suggest that the larvae of Z. subfasciatus have the ability to induce insensitive amylases early in their development. A short period of feeding on P. vulgaris cotyledon flour was sufficient to irreversibly induce the inducible alpha-amylase isoforms. Incubations of brush border membrane vesicles with the alpha-amylase inhibitor 1 from P. vulgaris suggest that the inhibitor is recognized by putative receptors found in the midgut microvillar membranes. (C) 2010 Wiley Periodicals, Inc.
Resumo:
Among lampyrids, intraspecific sexual communication is facilitated by spectral correspondence between visual sensitivity and bioluminescence emission from the single lantern in the tail. Could a similar strategy be utilized by the elaterids (click beetles), which have one ventral abdominal and two dorsal prothoracic lanterns? Spectral sensitivity [S(lambda)] and bioluminescence were investigated in four Brazilian click beetle species Fulgeochlizus bruchii, Pyrearinus termitilluminans, Pyrophorus punctatissimus and P. divergens, representing three genera. In addition, in situ microspectrophotometric absorption spectra were obtained for visual and screening pigments in P. punctatissimus and P. divergens species. In all species, the electroretinographic S(lambda) functions showed broad peaks in the green with a shoulder in the near-ultraviolet, suggesting the presence of short- and long-wavelength receptors in the compound eyes. The long-wavelength receptor in Pyrophorus species is mediated by a P540 rhodopsin in conjunction with a species-specific screening pigment. A correspondence was found between green to yellow bioluminescence emissions and its broad S(lambda) maximum in each of the four species. It is hypothesized that in elaterids, bioluminescence of the abdominal lantern is an optical signal for intraspecifc sexual communication, while the signals from the prothoracic lanterns serve to warn predators and may also provide illumination in flight.
Resumo:
The curculionid beetle Naupactus bipes (Germar, 1824) (Coleoptera: Curculionidae: Brachycerinae) has shown feeding preference for leaves of Piper gaudichaudianum, demonstrating an unexpected specificity for an insect considered to be a generalist. The leaves of P. gaudichaudianum contain the prenylated chromenes gaudichaudianic acid (4, major compound) and its methyl ester (5) in addition to a chromene (3) lacking one prenyl residue. In addition to 4, roots contain the chromone methyl ester (1) and methyl taboganate (2, major compound). Feeding on roots, larvae of N. bipes sequester exclusively the root-specific compounds 1 and 2. Adult beetles sequester the leaf-specific chromenes 3 and 4, but were found to also contain compounds 1 and 2 that are absent in leaves. Therefore, it is suggested that 1 and 2 are sequestered by larvae and can be found in the body of adult insects after long-term storage. In addition, 3 and 4, the major compounds in leaves were found to be associated with the eggs.
Resumo:
The biotransformation of the major Piper solmsianum leaf phenylpropanoids, such as the tetrahydrofuran lignan grandisin and derivatives was investigated in the beetle Naupactus bipes as well as in the caterpillars Heraclides hectorides and Quadrus u-lucida. Analysis of fecal material indicated that metabolism occurred mainly through mono- and di-O-demethylation at para positions of 3,4,5-trimethoxyphenyl rings of tetrahydrofuran lignans during digestion by these insects. Additionally, 3-hydroxy-4,5-dimethoxycinnamyl and 3,4,5-trimethoxycinnamyl alcohols were identified in fecal extracts of N. bipes. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
O gorgulho Ochetina un!/Órmis é o principal inseto praga surgido nos últimos anos em arroz irrigado, no sul do Brasil, devido às perdas que causa à produtividade da cultura. Com o objetivo de investigar os danos do inseto na cultura de arroz irrigado, sob diferentes níveis~. populacionais de infestação, foi conduzido ensaio em campo experimental, na safra 2002/03. Para isso utilizou-se seis tratamentos: O, 2, 6, 12, 24 e 32 adultos/O,R 01:\ em delineamento de blocos casualizados com 4 repetições. O sistema de irrigação e drenagem foi individualizado. A cultivar IRGA 417, de ciclo curto. foi semeada com densidade de 80 sementes/mo Um desbaste foi feito aos 19 dias após a semeadura, permanecendo 200 plantas de tamanho uniforme, por unidade experimentaL A infestação foi realizada aos sete dias após o estabelecimento da lâmina de água, que correspondeu a 32 dias após a semeadura. As variáveis avaliadas foram número de folhas perfuràdas, ma.,<;saseca de folhas, estatura de plantas, número de panículas/m, número de grãoslpanícula, peso de mil grãos, esterilidade de grãos e produtividade de grãos. Observou-se redução da estatura e acamamento de plantas. A cada inseto/O)~ m2 estimou-se redução de 0,441 panículaslm, de 0,456 grãos/panícula e de produtividade equivaJente a 83,567 kglha. O percentual de redução da produtividade foi de I,OR% a cada inseto/1112.
Resumo:
Chitin is an important structural component of the cellular wall of fungi and exoskeleton of many invertebrate plagues, such as insects and nematodes. In digestory systems of insects it forms a named matrix of peritrophic membrane. One of the most studied interaction models protein-carbohydrate is the model that involves chitin-binding proteins. Among the involved characterized domains already in this interaction if they detach the hevein domain (HD), from of Hevea brasiliensis (Rubber tree), the R&R consensus domain (R&R), found in cuticular proteins of insects, and the motif called in this study as conglicinin motif (CD), found in the cristallography structure of the β-conglicinin bounded with GlcNac. These three chitin-binding domains had been used to determine which of them could be involved in silico in the interaction of Canavalia ensiformis and Vigna unguiculata vicilins with chitin, as well as associate these results with the WD50 of these vicilins for Callosobruchus maculatus larvae. The technique of comparative modeling was used for construction of the model 3D of the vicilin of V. unguiculata, that was not found in the data bases. Using the ClustalW program it was gotten localization of these domains in the vicilins primary structure. The domains R&R and CD had been found with bigger homology in the vicilins primary sequences and had been target of interaction studies. Through program GRAMM models of interaction ( dockings ) of the vicilins with GlcNac had been gotten. The results had shown that, through analysis in silico, HD is not part of the vicilins structures, proving the result gotten with the alignment of the primary sequences; the R&R domain, although not to have structural similarity in the vicilins, probably it has a participation in the activity of interaction of these with GlcNac; whereas the CD domain participates directly in the interaction of the vicilins with GlcNac. These results in silico show that the amino acid number, the types and the amount of binding made for the CD motif with GlcNac seem to be directly associates to the deleterious power that these vicilins show for C. maculatus larvae. This can give an initial step in the briefing of as the vicilins interact with alive chitin in and exert its toxic power for insects that possess peritrophic membrane