928 resultados para Variant in site acceptor splicing consensus
Resumo:
The ABO blood group is the most important blood group system in transfusion medicine and organ transplantation. To date, more than 160 ABO alleles have been identified by molecular investigation. Almost all ABO genotyping studies have been performed in blood donors and families and for investigation of ABO subgroups detected serologically. The aim of the present study was to perform ABO genotyping in patients with leukemia. Blood samples were collected from 108 Brazilian patients with chronic myeloid leukemia (N = 69), chronic lymphoid leukemia (N = 13), acute myeloid leukemia (N = 15), and acute lymphoid leukemia (N = 11). ABO genotyping was carried out using allele specific primer polymerase chain reaction followed by DNA sequencing. ABO*001 was the most common allele found, followed by ABO*022 and by ABO*A103. We identified 22 new ABO*(variants) in the coding region of the ABO gene in 25 individuals with leukemia (23.2%). The majority of ABO variants was detected in O alleles (15/60.0%). In 5 of 51 samples typed as blood group O (9.8%), we found non-deletional ABO*O alleles. Elucidation of the diversity of this gene in leukemia and in other diseases is important for the determination of the effect of changes in an amino acid residue on the specificity and activity of ABO glycosyltransferases and their function. In conclusion, this is the first report of a large number of patients with leukemia genotyped for ABO. The findings of this study indicate that there is a high level of recombinant activity in the ABO gene in leukemia patients, revealing new ABO variants.
Resumo:
Background: Genetic polymorphisms of the TCF7L2 gene are strongly associated with large increments in type 2 diabetes risk in different populations worldwide. In this study, we aimed to confirm the effect of the TCF7L2 polymorphism rs7903146 on diabetes risk in a Brazilian population and to assess the use of this genetic marker in improving diabetes risk prediction in the general population. Methods: We genotyped the single nucleotide polymorphisms (SNP) rs7903146 of the TCF7L2 gene in 560 patients with known coronary disease enrolled in the MASS II (Medicine, Angioplasty, or Surgery Study) Trial and in 1,449 residents of Vitoria, in Southeast Brazil. The associations of this gene variant to diabetes risk and metabolic characteristics in these two different populations were analyzed. To access the potential benefit of using this marker for diabetes risk prediction in the general population we analyzed the impact of this genetic variant on a validated diabetes risk prediction tool based on clinical characteristics developed for the Brazilian general population. Results: SNP rs7903146 of the TCF7L2 gene was significantly associated with type 2 diabetes in the MASS-II population (OR = 1.57 per T allele, p = 0.0032), confirming, in the Brazilian population, previous reports of the literature. Addition of this polymorphism to an established clinical risk prediction score did not increased model accuracy (both area under ROC curve equal to 0.776). Conclusion: TCF7L2 rs7903146 T allele is associated with a 1.57 increased risk for type 2 diabetes in a Brazilian cohort of patients with known coronary heart disease. However, the inclusion of this polymorphism in a risk prediction tool developed for the general population resulted in no improvement of performance. This is the first study, to our knowledge, that has confirmed this recent association in a South American population and adds to the great consistency of this finding in studies around the world. Finally, confirming the biological association of a genetic marker does not guarantee improvement on already established screening tools based solely on demographic variables.
Resumo:
Premise of the study: The phloem is a plant tissue with a critical role in plant nutrition and signaling. However, little is still known about the evolution of this tissue. In lianas of the Bignoniaceae, two distinct types of phloem coexist: a regular and a variant phloem. The cells associated with these two phloem types are known to be anatomically different; however, it is still unclear what steps were involved in the evolution of such differences. Methods: Here we studied the anatomical development of the regular and variant phloem in representatives of all 21 genera of Bignonieae and used a phylogenetic framework to investigate the timing of changes associated with the evolution of each phloem type. Key results: We found that the variant phloem always appears in a determinate location, between the leaf orthostichies. Furthermore, the variant phloem was mostly occupied by very wide sieve tubes and generally included a higher concentration of fibers, indicating an increase in conduction and mechanical support. On the other hand, the regular phloem included much more parenchyma, more and wider rays, and tiny sieve tubes that resembled terminal sieve tubes from plants with seasonal formation of vascular tissues; these findings suggest reduced conduction and higher storage capacity in the regular phloem. Conclusions: Overall, differences between the regular and variant phloem increased over time, leading to further specialization in conduction in the variant phloem and an increase in storage specialization in the regular phloem.
Resumo:
Osteogenesis imperfecta is a heterogeneous genetic disorder characterized by bone fragility and deformity, recurrent fractures, blue sclera, short stature, and dentinogenesis imperfecta. Most cases are caused by mutations in COL1A1 and COL1A2 genes. We present a novel splicing mutation in the COL1A1 gene (c. 1875+ 1G>C) in a 16-year-old Brazilian boy diagnosed as a type III osteogenesis imperfecta patient. This splicing mutation and its association with clinical phenotypes will be submitted to the reference database of COL1A1 mutations, which has no other description of this mutation.
Resumo:
The identification of alternatively spliced transcripts has contributed to a better comprehension of developmental mechanisms, tissue-specific physiological processes and human diseases. Polymerase chain reaction amplification of alternatively spliced variants commonly leads to the formation of heteroduplexes as a result of base pairing involving exons common between the two variants. S1 nuclease cleaves single-stranded loops of heteroduplexes and also nicks the opposite DNA strand. In order to establish a strategy for mapping alternative splice-prone sites in the whole transcriptome, we developed a method combining the formation of heteroduplexes between 2 distinct splicing variants and S1 nuclease digestion. For 20 consensuses identified here using this methodology, 5 revealed a conserved splice site after inspection of the cDNA alignment against the human genome (exact splice sites). For 8 other consensuses, conserved splice sites were mapped at 2 to 30 bp from the border, called proximal splice sites; for the other 7 consensuses, conserved splice sites were mapped at 40 to 800 bp, called distal splice sites. These latter cases showed a nonspecific activity of S1 nuclease in digesting double-strand DNA. From the 20 consensuses identified here, 5 were selected for reverse transcription-polymerase chain reaction validation, confirming the splice sites. These data showed the potential of the strategy in mapping splice sites. However, the lack of specificity of the S1 nuclease enzyme is a significant obstacle that impedes the use of this strategy in large-scale studies.
Resumo:
Background: Exposure of cells to environmental stress conditions can lead to the interruption of several intracellular processes, in particular those performed by macromolecular complexes such as the spliceosome. Results: During nucleotide sequencing of cDNA libraries constructed using RNA isolated from B. emersonii cells submitted to heat shock and cadmium stress, a large number of ESTs with retained introns was observed. Among the 6,350 ESTs obtained through sequencing of stress cDNA libraries, 181 ESTs presented putative introns (2.9%), while sequencing of cDNA libraries from unstressed B. emersonii cells revealed only 0.2% of ESTs containing introns. These data indicate an enrichment of ESTs with introns in B. emersonii stress cDNA libraries. Among the 85 genes corresponding to the ESTs that retained introns, 19 showed more than one intron and three showed three introns, with intron length ranging from 55 to 333 nucleotides. Canonical splicing junctions were observed in most of these introns, junction sequences being very similar to those found in introns from genes previously characterized in B. emersonii, suggesting that inhibition of splicing during stress is apparently a random process. Confirming our observations, analyses of gpx3 and hsp70 mRNAs by Northern blot and S1 protection assays revealed a strong inhibition of intron splicing in cells submitted to cadmium stress. Conclusion: In conclusion, data indicate that environmental stresses, particularly cadmium treatment, inhibit intron processing in B. emersonii, revealing a new adaptive response to cellular exposure to this heavy metal.
Resumo:
The present study investigates the effects of drill cutting discharges on the structure of meiofauna communities in an area of the shelf break at Campos Basin, Southeast Brazil. Drilling activities were operated, in a first phase, with water-based fluid and, in a second phase, with synthetic fluid paraffin-based (NAF-III). A total of 135 samples taken at a pre-drilling situation (MS1) and two post-drilling moments (MS2 and MS3-3 and 22 months post-drilling, respectively) were analyzed. Effects on meiofauna were dependent on two main factors: 1-the impact received during drilling operation, if water-based or synthetic/water-based drilling fluid and 2-the background state, if it already presented signs of previous drilling activities or not. Based on univariate and multivariate analysis, there were evidences that the most affected area after drilling was those under the influence of synthetic-based fluid and that already had signs of previous drillings activities. The region impacted only by water-based fluid was less affected and the only one that completely recovered after 22 months. Nematodes and copepods had different responses to the impact. While copepods flourish in the impacted area and recovered 22 months after drilling, nematodes were adversely affected shortly after drilling and the community structure only recovered where hydrocarbons had been depleted.
Resumo:
Prohormone proteins in animals and yeast are typically processed at dibasic sites by convertases. Propeptide hormones are also found in plants but little is known about processing. We show for the first time that a dibasic site upstream of a plant peptide hormone, AtRALF1, is essential for processing. Overexpression of preproAtRALF1 causes semidwarfism whereas overexpression of preproAtRALF1(R69A), the propeptide with a mutation in the dibasic site, shows a normal phenotype. RALF1(R69A) plants accumulate only the mutated proprotein and not the processed peptide. In vitro processing using microsomal fractions suggests that processing is carried out by a kexin-like convertase. (C) 2008 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.
Resumo:
Deficiencies of complement proteins of the classical pathway are strongly associated with the development of autoimmune diseases. Deficiency of Clr has been observed to occur concomitantly with deficiency in Cls and 9 out of 15 reported cases presented systemic lupus erythernatosus (SLE). Here, we describe a family in which all four children are deficient in Cls but only two of them developed SLE. Hemolytic activity mediated by the alternative and the lectin pathways were normal, but classical pathway activation was absent in all children`s sera. Cls was undetectable, while in the parents` sera it was lower than in the normal controls. The levels of Clr observed in the siblings and parents sera were lower than in the control, while the concentrations of other complement proteins (C3, C4, MBL and MASP-2) were normal in all family members. Impairment of Cls synthesis was observed in the patients` fibroblasts when analyzed by confocal microscopy. We show that all four siblings are homozygous for a mutation at position 938 in exon 6 of the Cls cDNA that creates a premature stop codon. Our investigations led us to reveal the presence of previously uncharacterized splice variants of Cls mRNA transcripts in normal human cells. These variants are derived from the skipping of exon 3 and from the use of an alternative 3` splice site within intron I which increases the size of exon 2 by 87 nucleotides. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
No fully effective treatment has been developed since the discovery of Chagas` disease. Since drug-resistant Trypanosoma cruzi strains are occurring and the current therapy is effective in the acute phase but with various adverse side effects, more studies are needed to characterize the susceptibility of T. cruzi to new drugs. Pre-mRNA maturation in trypanosomatids occurs through a process called trans-splicing, which is unusual RNA processing reaction, and it implies the processing of polycistronic transcription units into individual mRNAs; a short transcript spliced leader (SL RNA) is trans-spliced to the acceptor pre-mRNA, giving origin to the mature mRNA. Cubebin derivatives seem to provide treatments with less collateral effects than benznidazole and showed similar or better trypanocidal activities than benznidazole. Therefore, the cubebin derivatives ((-)-6,6`-dinitrohinokinin (DNH) and (-)-hinokinin (HQ)) interference in the mRNA processing was evaluated using T. cruzi permeable cells (Y and BOL (Bolivia) strains) following by RNase protection reaction. These substances seem to intervene in any step of the RNA transcription, promoting alterations in the RNA synthesis, even though the RNA processing mechanism still occurs. Furthermore, HQ presented better activity against the parasites than DNH, meaning that BOL strain seems to be more resistant than Y.
Resumo:
A common mechanism for chromosomal fragile site genesis is not yet apparent. Folate-sensitive fragile sites are expanded p(CCG)n repeats that arise from longer normal alleles. Distamycin A or bromodeoxyuridine-inducible fragile site FRA16B is an expanded AT-rich similar to 33 bp repeat; however, the relationship between normal and fragile site alleles is not known. Here, we report that bromodeoxyuridine-inducible, distamycin A-insensitive fragile site FRA10B is composed of expanded similar to 42 bp repeats. Differences in repeat motif length or composition between different FRA10B families indicate multiple independent expansion events. Some FRA10B alleles comprise a mixture of different expanded repeat motifs. FRA10B fragile site and long normal alleles share flanking polymorphisms. Somatic and intergenerational FRA10B repeat instability analogous to that found in expanded trinucleotide repeats supports dynamic mutation as a common mechanism for repeat expansion.
Resumo:
We have identified a novel mutation within the linker L12 region of keratin 5 (K5) in a family with the Kobner variant of epidermolysis bullosa simplex. The pattern of inheritance of the disorder in this family is consistent with an autosomal dominant mode of transmission. Affected individuals develop extensive and generalized blistering at birth or early infancy but in later years clinical manifestations are largely confined to palmo-plantar surfaces. Direct sequencing of polymerase chain reaction products revealed a T to C transition within codon 323 of K5 in affected individuals, resulting in a valine to alanine substitution of the seventh residue within the L12 linker domain. This mutation was not observed in unaffected family members or in 100 K5 alleles of unrelated individuals with normal skin. The other critical regions of K5 and K14 were unremarkable in this family except for common polymorphisms that have been previously described. The valine at position 7 of the L12 domain is absolutely conserved in all type II keratins, and in other intermediate filament subunits as well, which suggests that this residue makes an important contribution to filament integrity. Secondary structure analysis revealed that alanine at this position markedly reduces both the hydrophobicity and the beta-sheet nature of the L12 domain. This is the first report of a mutation at this position in an intermediate filament subunit and reinforces the importance of this region to filament biology.
Resumo:
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease in which unknown arthrogenic autoantigen is presented to CD4+ T cells. The strong association of the disease with an epitope within the HLA-DR chain shared between various alleles of HLA-DR4 and DR1 emphasizes the importance of antigen presentation. This immune response predominantly occurs in the synovial tissue and fluid of the joints and autoreactive T cells are readily demonstrable in both the synovial compartment and blood. Circulating dendritic cells (DC) are phenotypically and functionally identical with normal peripheral blood (PB) DC. In the synovial tissue, fully differentiated perivascular DC are found in close association with T cells and with B cell follicles, sometimes containing follicular DC. These perivascular DC migrate across the activated endothelium from blood and receive differentiative signals within the joint from monocyte-derived cytokines and CD40-ligand+ T cells. In the SF, DC manifest an intermediate phenotype, similar to that of monocyte-derived DC in vitro. Like a delayed-type hypersensitivity response, the rheumatoid synovium represents an effector site. DC at many effector sites have a characteristic pattern of infiltration and differentiation. It is important to note that the effector response is not self-limiting in RA autoimmune inflammation. In this article, we argue that the presentation of self-antigen by DC and by autoantibody-producing B cells is critical for the perpetuation of the autoimmune response. Permanently arresting this ongoing immune response with either pharmaceutical agents or immunotherapy is a major challenge for immunology.
Resumo:
Primary olfactory neurons project their axons to the olfactory bulb, where they terminate in discrete loci called glomeruli. All neurons expressing the same odorant receptor appear to terminate in a few glomeruli in each olfactory bulb. In the P2-IRES-tau-LacZ line of transgenic mice, LacZ is expressed in the perikarya and axons of primary olfactory neurons that express the P2 odorant receptor. In the present study, we examined the developmental appearance of P2 neurons, the topographical targeting of P2 axons, as well as the formation of P2 glomeruli in the olfactory bulb. P2 axons were first detected in the olfactory nerve fiber layer at embryonic day 14.5 (E14.5), and by E15.5 these axons terminated in a broad locus in the presumptive glomerular layer. During the next 5 embryonic days, the elongated cluster of axons developed into discrete glomerulus-like structures. In many cases, glomeruli appeared as pairs, which were initially connected by a fascicle of P2 axons. This connection was lost by postnatal day 7.5, and double glomeruli at the same locus were observed in 85% of adult animals. During the early postnatal period, there was considerable mistargeting of P2 axons. In some cases P2 axons entered inappropriate glomeruli or continued to grow past the glomerular layer into the deeper layers of the olfactory bulb. These aberrant axons were not observed in adult animals. These results indicate that olfactory axons exhibit errors while converging onto a specific glomerulus and suggest that guidance cues may be diffusely distributed at target sites in the olfactory bulb.