995 resultados para VOLUME TOMOGRAPHY
Resumo:
Postmortem angiography methods that use water soluble or lipid soluble liquid contrast compounds may potentially modify the composition of fluid-based biological samples and thus influence toxicological findings. In this study, we investigated whether toxicological investigations performed in urine collected prior to and post angiography using Angiofil? mixed with paraffin oil are characterized by different qualitative or quantitative results. In addition, we studied whether diluting samples with 1% and 3% contrast medium solution may modify molecule concentration. A postmortem angiography group consisting of 50 cases and a postmortem group without angiography consisting of 50 cases were formed. In the first group, toxicological investigations were performed in urine samples collected prior to and post angiography as well as in undiluted and diluted samples. In the second group, analyses were performed in undiluted and diluted urine, bile, gastric content, cerebrospinal and pericardial fluids collected during autopsy. The preliminary results indicate that differences may be observed between urine samples collected prior to and post angiography in the number of identified molecules in relation to specific cases. Analyses performed in diluted samples failed to reveal differences that might potentially alter the interpretation of toxicological results in all analyzed specimens for nearly all molecules, except for tetrahydrocannabinol and its metabolites. Though these findings suggest that toxicology might be effectively performed, in very special cases and for a large number of molecules, in biological samples collected after angiography, it remains recommendable to collect biological fluids for toxicology prior to contrast medium injection.
Resumo:
Background: Previous studies reported an increase of mean platelet volume (MPV) in patients with acute ischemic stroke. However, its correlation with stroke severity has not been investigated. Moreover, studies on the association of MPV with functional outcome yielded inconsistent results. Methods: We included all consecutive ischemic stroke patients admitted to CHUV (Centre Hospitalier Universitaire Vaudois) Neurology Service within 24 h after stroke onset who had MPV measured on admission. The association of MPV with stroke severity (NIHSS score at admission and at 24 h) and outcome (Rankin Scale score at 3 and 12 months) was analyzed in univariate analysis. The chi(2) test was performed to compare the frequency of minor strokes (NIHSS score </=4) and good functional outcome (Rankin Scale score </=2) across MPV quartiles. The ANOVA test was used to compare MPV between stroke subtypes according to the TOAST classification. Student's two-tailed unpaired t test was performed to compare MPV between lacunar and nonlacunar strokes. MPV was generated at admission by the Sysmex XE-2100 automated cell counter (Sysmex Corporation, Kobe, Japan) from EDTA blood samples. Results: There was no significant difference in the frequency of minor strokes (p = 0.46) and good functional outcome (p = 0.06) across MPV quartiles. MPV was not associated with stroke severity or outcome in univariate analysis. There was no significant difference in MPV between stroke subtypes according to the TOAST classification (p = 0.173) or between lacunar and nonlacunar strokes (10.50 +/- 0.91 vs. 10.40 +/- 0.81 fl, p = 0.322). Conclusions: MPV, assessed within 24 h after ischemic stroke onset, is not associated with stroke severity or functional outcome.
Resumo:
The objective of this work is to present a multitechnique approach to define the geometry, the kinematics, and the failure mechanism of a retrogressive large landslide (upper part of the La Valette landslide, South French Alps) by the combination of airborne and terrestrial laser scanning data and ground-based seismic tomography data. The advantage of combining different methods is to constrain the geometrical and failure mechanism models by integrating different sources of information. Because of an important point density at the ground surface (4. 1 points m?2), a small laser footprint (0.09 m) and an accurate three-dimensional positioning (0.07 m), airborne laser scanning data are adapted as a source of information to analyze morphological structures at the surface. Seismic tomography surveys (P-wave and S-wave velocities) may highlight the presence of low-seismic-velocity zones that characterize the presence of dense fracture networks at the subsurface. The surface displacements measured from the terrestrial laser scanning data over a period of 2 years (May 2008?May 2010) allow one to quantify the landslide activity at the direct vicinity of the identified discontinuities. An important subsidence of the crown area with an average subsidence rate of 3.07 m?year?1 is determined. The displacement directions indicate that the retrogression is controlled structurally by the preexisting discontinuities. A conceptual structural model is proposed to explain the failure mechanism and the retrogressive evolution of the main scarp. Uphill, the crown area is affected by planar sliding included in a deeper wedge failure system constrained by two preexisting fractures. Downhill, the landslide body acts as a buttress for the upper part. Consequently, the progression of the landslide body downhill allows the development of dip-slope failures, and coherent blocks start sliding along planar discontinuities. The volume of the failed mass in the crown area is estimated at 500,000 m3 with the sloping local base level method.
Resumo:
In this paper we propose a stabilized conforming finite volume element method for the Stokes equations. On stating the convergence of the method, optimal a priori error estimates in different norms are obtained by establishing the adequate connection between the finite volume and stabilized finite element formulations. A superconvergence result is also derived by using a postprocessing projection method. In particular, the stabilization of the continuous lowest equal order pair finite volume element discretization is achieved by enriching the velocity space with local functions that do not necessarily vanish on the element boundaries. Finally, some numerical experiments that confirm the predicted behavior of the method are provided.
Resumo:
The purpose of this study was to determine the prognostic accuracy of perfusion computed tomography (CT), performed at the time of emergency room admission, in acute stroke patients. Accuracy was determined by comparison of perfusion CT with delayed magnetic resonance (MR) and by monitoring the evolution of each patient's clinical condition. Twenty-two acute stroke patients underwent perfusion CT covering four contiguous 10mm slices on admission, as well as delayed MR, performed after a median interval of 3 days after emergency room admission. Eight were treated with thrombolytic agents. Infarct size on the admission perfusion CT was compared with that on the delayed diffusion-weighted (DWI)-MR, chosen as the gold standard. Delayed magnetic resonance angiography and perfusion-weighted MR were used to detect recanalization. A potential recuperation ratio, defined as PRR = penumbra size/(penumbra size + infarct size) on the admission perfusion CT, was compared with the evolution in each patient's clinical condition, defined by the National Institutes of Health Stroke Scale (NIHSS). In the 8 cases with arterial recanalization, the size of the cerebral infarct on the delayed DWI-MR was larger than or equal to that of the infarct on the admission perfusion CT, but smaller than or equal to that of the ischemic lesion on the admission perfusion CT; and the observed improvement in the NIHSS correlated with the PRR (correlation coefficient = 0.833). In the 14 cases with persistent arterial occlusion, infarct size on the delayed DWI-MR correlated with ischemic lesion size on the admission perfusion CT (r = 0.958). In all 22 patients, the admission NIHSS correlated with the size of the ischemic area on the admission perfusion CT (r = 0.627). Based on these findings, we conclude that perfusion CT allows the accurate prediction of the final infarct size and the evaluation of clinical prognosis for acute stroke patients at the time of emergency evaluation. It may also provide information about the extent of the penumbra. Perfusion CT could therefore be a valuable tool in the early management of acute stroke patients.
Resumo:
BACKGROUND: The purpose of this prospective study was to perform a head-to-head comparison of the two methods most frequently used for evaluation of carotid plaque characteristics: Multi-detector Computed Tomography Angiography (MDCTA) and black-blood 3 T-cardiovascular magnetic resonance (bb-CMR) with respect to their ability to identify symptomatic carotid plaques. METHODS: 22 stroke unit patients with unilateral symptomatic carotid disease and >50% stenosis by duplex ultrasound underwent MDCTA and bb-CMR (TOF, pre- and post-contrast fsT1w-, and fsT2w- sequences) within 15 days of symptom onset. Both symptomatic and contralateral asymptomatic sides were evaluated. By bb-CMR, plaque morphology, composition and prevalence of complicated AHA type VI lesions (AHA-LT6) were evaluated. By MDCTA, plaque type (non-calcified, mixed, calcified), plaque density in HU and presence of ulceration and/or thrombus were evaluated. Sensitivity (SE), specificity (SP), positive and negative predictive value (PPV, NPV) were calculated using a 2-by-2-table. RESULTS: To distinguish between symptomatic and asymptomatic plaques AHA-LT6 was the best CMR variable and presence / absence of plaque ulceration was the best CT variable, resulting in a SE, SP, PPV and NPV of 80%, 80%, 80% and 80% for AHA-LT6 as assessed by bb-CMR and 40%, 95%, 89% and 61% for plaque ulceration as assessed by MDCTA. The combined SE, SP, PPV and NPV of bb-CMR and MDCTA was 85%, 75%, 77% and 83%, respectively. CONCLUSIONS: Bb-CMR is superior to MDCTA at identifying symptomatic carotid plaques, while MDCTA offers high specificity at the cost of low sensitivity. Results were only slightly improved over bb-CMR alone when combining both techniques.
Resumo:
PURPOSE: Postmortem computed tomography angiography (PMCTA) was introduced into forensic investigations a few years ago. It provides reliable images that can be consulted at any time. Conventional autopsy remains the reference standard for defining the cause of death, but provides only limited possibility of a second examination. This study compares these two procedures and discusses findings that can be detected exclusively using each method. MATERIALS AND METHODS: This retrospective study compared radiological reports from PMCTA to reports from conventional autopsy for 50 forensic autopsy cases. Reported findings from autopsy and PMCTA were extracted and compared to each other. PMCTA was performed using a modified heart-lung machine and the oily contrast agent Angiofil® (Fumedica AG, Muri, Switzerland). RESULTS: PMCTA and conventional autopsy would have drawn similar conclusions regarding causes of death. Nearly 60 % of all findings were visualized with both techniques. PMCTA demonstrates a higher sensitivity for identifying skeletal and vascular lesions. However, vascular occlusions due to postmortem blood clots could be falsely assumed to be vascular lesions. In contrast, conventional autopsy does not detect all bone fractures or the exact source of bleeding. Conventional autopsy provides important information about organ morphology and remains the only way to diagnose a vital vascular occlusion with certitude. CONCLUSION: Overall, PMCTA and conventional autopsy provide comparable findings. However, each technique presents advantages and disadvantages for detecting specific findings. To correctly interpret findings and clearly define the indications for PMCTA, these differences must be understood.