934 resultados para VASCULAR SMOOTH MUSCLE
Resumo:
Hypoxia and the development and remodeling of blood vessels and connective tissue in granulation tissue that forms in a wound gap following full-thickness skin incision in the rat were examined as a function of time. A 1.5 cm-long incisional wound was created in rat groin skin and the opposed edges sutured together. Wounds were harvested between 3 days and 16 weeks and hypoxia, percent vascular volume, cell proliferation and apoptosis, α-smooth muscle actin, vascular endothelial growth factor-A, vascular endothelial growth factor receptor-2, and transforming growth factor-β 1 expression in granulation tissue were then assessed. Hypoxia was evident between 3 and 7 days while maximal cell proliferation at 3 days (123.6 ± 22.2 cells/mm 2, p < 0.001 when compared with normal skin) preceded the peak percent vascular volume that occurred at 7 days (15.83 ± 1.10%, p < 0.001 when compared with normal skin). The peak in cell apoptosis occurred at 3 weeks (12.1 ± 1.3 cells/mm 2, p < 0.001 when compared with normal skin). Intense α-smooth muscle actin labeling in myofibroblasts was evident at 7 and 10 days. Vascular endothelial growth factor receptor-2 and vascular endothelial growth factor-A were detectable until 2 and 3 weeks, respectively, while transforming growth factor-β 1 protein was detectable in endothelial cells and myofibroblasts until 3-4 weeks and in the extracellular matrix for 16 weeks. Incisional wound granulation tissue largely developed within 3-7 days in the presence of hypoxia. Remodeling, marked by a decline in the percent vascular volume and increased cellular apoptosis, occurred largely in the absence of detectable hypoxia. The expression of vascular endothelial growth factor-A, vascular endothelial growth factor receptor-2, and transforming growth factor-β 1 is evident prior, during, and after the peak of vascular volume reflecting multiple roles for these factors during wound healing.
Resumo:
INTRODUCTION Icing (cryotherapy) is being widely used for the treatment of closed soft tissue trauma (CSTT), such as those resulting from sport injuries. It is believed that cryotherapy induces vasoconstriction and through this mechanism reduces inflammation [1]. However, the impact of this technique on the healing of impaired vasculature and muscle injuries following trauma remains controversial. Recent evidence suggests that the muscle regeneration is delayed after cryotherapy [2]. Consequently, we aimed to investigate the effect of cryotherapy on the vascular morphology following CSTT using an experimental model in rats by contrast-enhanced micro-CT imaging. METHODS Fifty four rats were divided into three main groups: control (no injury, n=6), sham (CSTT but no icing treatment, n=24) and icing (CSTT, treated with one session of ice block massaged directly on the injured muscle for 20 minutes, n=24). The CSTT was induced to the left thigh (Biceps Femoris) of anaesthetised rats (Male, Wistar) to create a standardized and reproducible vascular and muscle injury using an impact device [3]. Following trauma, animals were euthanized after 1, 3, 7, and 28 days healing time (n=6 for each time point). For a three-dimensional vascular morphological assessment, the blood vessels of euthanised rats were flushed with heparinised saline and then perfused with a radio-opaque contrast agent (Microfil, MV 122, Flowtech, USA) using an infusion pump. Both hind-limbs were dissected, and then the injured and non-injured limbs were imaged using a micro-CT scanner (µCT 40, Scanco Medical, Switzerland) and total volume of the perfused blood vessels (TVV) was calculated. More detailed morphological parameters such as vessel volume (VV), diameter (VD), spacing (VSp), number (VN) and connectivity (VConn) were quantified through high resolution (6 µm), micro-CT-scanned biopsy samples (diameter: 8mm) taken directly from the region of the injured muscles. The biopsies were then analysed histologically to confirm the results derived from contrast-enhanced micro-CT imaging. RESULTS AND DISCUSSION The TVV was significantly higher in the injured legs compared to the non-injured legs at day 1 and 7 in the sham group and at day 28 in both sham and icing groups. The biopsies from the injured legs of the icing group showed a significant reduction in VV, VN, VD, VConn and an increase in VSp compared to those in the sham and control groups at days 1, 3 and 7, post injury. While the injured legs of the sham group exhibited a decrease in VN and VConn 28 days post trauma, indicating a return to the original values prior to trauma, these parameters had increased in the icing group (Figure 1). Also, at day 1 post injury, VV and VD of the injured legs were significantly higher in the sham group compared to the icing group, which may be attributed to the effect of vasoconstriction induced by icing. Further histomorphological evaluation of day 1 post injury, indicated that although cryotherapy significantly reduced the injury size and influx of inflammatory cells, including macrophages and neutrophils, a delay in vascular and muscle fiber regeneration was found at later time points confirming other reports from the literature [2]. CONCLUSIONS We have demonstrated using micro-CT imaging that the vascular morphology changes after CSTT, and that its recovery is affected by therapeutic modalities such as icing. This may be useful for the development of future clinical monitoring, diagnosis and treatment of CSTT. While icing reduces the swelling after trauma, our results suggest that it may delay the recovery of the vasculature in the injured tissue.
Resumo:
GABAB receptors regulate the intracellular Ca2+ concentration ([Ca2+]i) in a number of cells (e.g., retina, airway epithelium and smooth muscle), but whether they are expressed in vascular endothelial cells and similarly regulate the [Ca2+]i is not known. The purpose of this study was to investigate the expression of GABAB receptors, a subclass of receptors to the inhibitory neurotransmitter γ-aminobutyric acid (GABA), in cultured human aortic endothelial cells (HAECs), and to explore if altering receptor activation modified [Ca2+]i and endothelial nitric oxide synthase (eNOS) translocation. Real-time PCR, western blots and immunofluorescence were used to determine the expression of GABAB1 and GABAB2 in cultured HAECs. The effects of GABAB receptors on [Ca2+]i in cultured HAECs were demonstrated using fluo-3. The influence of GABAB receptors on eNOS translocation was assessed by immunocytochemistry. Both GABAB1 and GABAB2 mRNA and protein were expressed in cultured HAECs, and the GABAB1 and GABAB2 proteins were colocated in the cell membrane and cytoplasm. One hundred μM baclofen caused a transient increase of [Ca2+]i and eNOS translocation in cultured HAECs, and the effects were attenuated by pretreatment with the selective GABAB receptor antagonists CGP46381 and CGP55845. GABAB receptors are expressed in HAECs and regulate the [Ca2+]i and eNOS translocation. Cultures of HAECs may be a useful in vitro model for the study of GABAB receptors and vascular biology.
Resumo:
Migraine is a debilitating neurological disorder affecting around 1 in 7 people worldwide, but its molecular mechanisms remain poorly understood. Some debate exists over whether migraine is a disease of vascular dysfunction, or a result of neuronal dysfunction with secondary vascular changes. Genome-wide association (GWA) studies have thus far identified 13 independent loci associated with migraine. To identify new susceptibility loci, we performed the largest genetic study of migraine to date, comprising 59,674 cases and 316,078 controls from 22 GWA studies. We identified 45 independent single nucleotide polymorphisms (SNPs) significantly associated with migraine risk (P < 5 x 10-8) that map to 38 distinct genomic loci, including 28 loci not previously reported and the first locus identified on chromosome X. Furthermore, a subset analysis for migraine without aura (MO) identified seven of the same loci as from the full sample, whereas no loci reached genome-wide significance in the migraine with aura (MA) subset. In subsequent computational analyzes, the identified loci showed enrichment for genes expressed in vascular and smooth muscle tissues, consistent with a predominant theory of migraine that highlights vascular etiologies.
Resumo:
The circulatory system comprises the blood vascular system and the lymphatic vascular system. These two systems function in parallel. Blood vessels form a closed system that delivers oxygen and nutrients to the tissues and removes waste products from the tissues, while lymphatic vessels are blind-ended tubes that collect extravasated fluid and cells from the tissues and return them back to blood circulation. Development of blood and lymphatic vascular systems occurs in series. Blood vessels are formed via vasculogenesis and angiogenesis whereas lymphatic vessels develop via lymphangiogenesis, after the blood vascular system is already functional. Members of the vascular endothelial growth factor (VEGF) family are regulators of both angiogenesis and lymphangiogenesis, while members of the platelet-derived growth factor (PDGF) family are major mitogens for pericytes and smooth muscle cells and regulate formation of blood vessels. Vascular endothelial growth factor C (VEGF-C) is the major lymphatic growth factor and signaling through its receptor vascular endothelial growth factor receptor 3 (VEGFR-3) is sufficient for lymphangiogenesis in adults. We studied the role of VEGF-C in embryonic lymphangiogenesis and showed that VEGF-C is absolutely required for the formation of lymph sacs from embryonic veins. VEGFR-3 is also required for normal development of the blood vascular system during embryogenesis, as Vegfr3 knockout mice die at mid-gestation due to failure in remodeling of the blood vessels. We showed that sufficient VEGFR-3 signaling in the embryo proper is required for embryonic angiogenesis and in a dosage-sensitive manner for embryonic lymphangiogenesis. Importantly, mice deficient in both VEGFR-3 ligands, Vegfc and Vegfd, developed a normal blood vasculature, suggesting VEGF-C- and VEGF-D- independent functions for VEGFR-3 in the early embryo. Platelet-derived growth factor B (PDGF-B) signals via PDGFR-b and regulates formation of blood vessels by recruiting pericytes and smooth muscle cells around nascent endothelial tubes. We showed that PDGF-B fails to induce lymphangiogenesis when overexpressed in adult mouse skin using adenoviral vectors. However, mouse embryos lacking Pdgfb showed abnormal lymphatic vessels, suggesting that PDGF-B plays a role in lymphatic vessel maturation and separation from blood vessels during embryogenesis. Lymphatic vessels play a key role in immune surveillance, fat absorption and maintenance of fluid homeostasis in the body. However, lymphatic vessels are also involved in various diseases, such as lymphedema and tumor metastasis. These studies elucidate the basic mechanisms of embryonic lymphangiogenesis and add to the knowledge of lymphedema and tumor metastasis treatments by giving novel insights into how lymphatic vessel growth could be induced (in lymphedema) or inhibited (in tumor metastasis).
Resumo:
Atherosclerosis is an inflammatory disease progressing over years via the accumulation of cholesterol in arterial intima with subsequent formation of atherosclerotic plaques. The stability of a plaque is determined by the size of its cholesterol-rich necrotic lipid core and the thickness of the fibrous cap covering it. The strength and thickness of the cap are maintained by smooth muscle cells and the extracellular matrix produced by them. A plaque with a large lipid core and a thin cap is vulnerable to rupture that may lead to acute atherothrombotic events, such as myocardial infarction and stroke. In addition, endothelial erosion, possibly induced by apoptosis of endothelial cells, may lead to such clinical events. One of the major causes of plaque destabilization is inflammation induced by accumulated and modified lipoproteins, and exacerbated by local aberrant shear stress conditions. Macrophages, T-lymphocytes and mast cells infiltrate particularly into the plaque’s shoulder regions prone to atherothrombotic events, and they are present at the actual sites of plaque rupture and erosion. Two major mechanisms of plaque destabilization induced by inflammation are extracellular matrix remodeling and apoptosis. Mast cells are bone marrow-derived inflammatory cells that as progenitors upon chemotactic stimuli infiltrate the target tissues, such as the arterial wall, differentiate in the target tissues and mediate their effects via the release of various mediators, typically in a process called degranulation. The released preformed mast cell granules contain proteases such as tryptase, chymase and cathepsin G bound to heparin and chondroitin sulfate proteoglycans. In addition, various soluble mediators such as histamine and TNF-alpha are released. Mast cells also synthesize many mediators such as cytokines and lipid mediators upon activation. Mast cells are capable of increasing the level of LDL cholesterol in the arterial intima by increasing accumulation and retention of LDL and by decreasing removal of cholesterol by HDL in vitro. In addition, by secreting proinflammatory mediators and proteases, mast cells may induce plaque destabilization by inducing apoptosis of smooth muscle and endothelial cells. Also in vivo data from apoE-/- and ldlr-/- mice suggest a role for mast cells in the progression of atherosclerosis. Furthermore, mast cell-deficient mice have become powerful tools to study the effects of mast cells in vivo. In this study, evidence suggesting a role for mast cells in the regulation of plaque stability is presented. In a mouse model genetically susceptible to atherosclerosis, mast cell deficiency (ldlr-/-/KitW-sh/W-sh mice) was associated with a less atherogenic lipid profile, a decreased level of lipid accumulation in the aortic arterial wall and a decreased level of vascular inflammation as compared to mast-cell competent littermates. In vitro, mast cell chymase-induced smooth muscle cell apoptosis was mediated by inhibition of NF-kappaB activity, followed by downregulation of bcl-2, release of cytochrome c, and activation of caspase-8, -9 and -3. Mast cell-induced endothelial cell apoptosis was mediated by chymase and TNF-alpha, and involved chymase-mediated degradation of fibronectin and vitronectin, and inactivation of FAK- and Akt-mediated survival signaling. Subsequently, mast cells induced inhibition of NF-kappaB activity and activation of caspase-8 and -9. In addition, possible mast cell protease-mediated mechanisms of endothelial erosion may include degradation of fibronectin and VE-cadherin. Thus, the present results suggest a role for mast cells in destabilization of atherosclerotic plaques.
Resumo:
Background: Mulibrey nanism (MUL; Muscle-liver-brain-eye nanism; OMIM 253250) is an autosomal recessive growth disorder more prevalent in Finland than elsewhere in the world. Clinical characteristics include severe prenatal onset growth restriction, cardiopathy, multiple organ manifestations but no major neurological handicap. MUL is caused by mutations in the TRIM37 gene on chromosome 17q22-23, encoding a peroxisomal protein TRIM37 with ubiquitin E3-ligase activity. Nineteen different mutations have been detected, four of them present in the Finnish patients. Objective: This study aimed to characterize clinical and histopathological features of MUL in the national cohort of Finnish patients. Patients and methods: A total of 92 Finnish patients (age 0.7 to 77 years) participated in the clinical follow-up study. Patients hospital records and growth charts were reviewed. Physical, radiographic and laboratory examinations were performed according to a clinical protocol. Thirty patients (18 females) were treated with recombinant human GH for a median period of 5.7 years. Biopsies and autopsy samples were used for the histopathological and immunohistochemical analyses. Results: MUL patients were born small for gestational age (SGA) with immature craniofacial features after prenatal-onset growth restriction. They experienced a continuous deceleration in both height SDS and weight-for-height (WFH) postnatally. In infancy feeding difficulties and frequent pneumonias were common problems. At the time of diagnosis (median age 2.1 years) characteristic craniofacial, radiological and ocular features were the most constant findings. MUL patients showed a dramatic change in glucose metabolism with increasing age. While the children had low fasting glucose and insulin levels, 90% of the adults were insulin resistant, half had type 2 diabetes and an additional 42% showed impaired glucose tolerance (IGT). Seventy percent fulfilled the National Cholesterol Education Program (NCEP) Adult Treatment Panel III criteria for metabolic syndrome as adults. GH therapy improved pre-pubertal growth but had only minor impact on adult height (+5 cm). Interestingly, treated subjects were slimmer and had less frequent metabolic concerns as young adults. MUL patients displayed histologically a disturbed architecture with ectopic tissues and a high frequency of both benign and malignant tumours present in several internal organs. A total of 232 tumorous lesions were detected in our patient cohort. The majority of the tumours showed strong expression of endothelial cell marker CD34 as well as α-smooth muscle actin (α-SMA). Fifteen of the tumours were malignant and seven of them (five Wilms tumours) occurred in the kidney. Conclusions: MUL patients present a distinct postnatal growth pattern. Short-term response of GH treatment is substantial but the long-term impact remains modest. Although MUL patients form a distinct clinical and diagnostic entity, their clinical findings vary considerably from infancy to adulthood. While failure to thrive dominates early life, MUL adults develop metabolic syndrome and have a tendency for malignancies and vascular lesions in several organs. This speaks for a central role of TRIM37 in regulation of key cellular functions, such as proliferation, migration, angiogenesis and insulin signalling.
Resumo:
O envelhecimento populacional é um fenômeno mundial, assim como o predomínio de mortes por doenças cardiovasculares. Estudos demonstram que o envelhecimento acarreta aumento da rigidez vascular e perturbações na reatividade macrovascular. O presente estudo comparou a microcirculação deste processo com adultos jovens através da pletismografia de oclusão venosa (POV) e da videocapilaroscopia do leito periungueal (VC). Para isto, desenvolveu-se um estudo transversal com dois grupos: idade entre 18 e 30 anos (n=16) e outro grupo com idade igual ou superior a 60 anos (n=21), além da subdivisão deste grupo em três subgrupos: idosas saudáveis (n=8), idosas em tratamento de hipertensão arterial (IDHAS,n=6) e idosas em tratamento de dislipidemia (IDDIS,n=6). Foram realizadas avaliações clínica, antropométrica, bioquímica e microcirculatória. Como resultados, a VC mostrou aumento dos diâmetros capilares aferente, apical e eferente e redução da relação velocidade máxima/ velocidade basal de deslocamento de hemácias para grupo de idosas e todos os subgrupos. A POV revelou diminuição da vasodilatação endotélio-dependente em todos os grupos estudados e a vasodilatação endotélio-independente alterou-se apenas em IDHAS e IDDIS. Como conclusões houve, no envelhecimento, alterações estruturais e funcionais da microcirculação assim como redução da vasodilatação endotélio-dependente. A vasodilatação endotélio-independente manteve-se inalterada, indicando que a célula muscular lisa da parede vascular permanece preservada, porém sofre alterações nos grupos IDHAS e IDDIS.
Resumo:
O objetivo deste trabalho foi analisar as alterações estruturais e bioquímicas na parede da bexiga resultante do tratamento crônico de ratos pré-púberes com altas doses de corticosterona. Foram estudados 26 ratos Wistar divididos em quatro grupos: T30 foi tratado com corticosterona até 29 dias de idade e morto no dia 30. T65 recebeu o mesmo tratamento, mas foi morto com 65 dias. Cada grupo tinha seu próprio controle (C30 e C65). Os animais foram tratados com injeções intraperitoneais diárias de corticosterona (2 mg/100g peso corporal) entre o 7 e 29 dias de vida. A bexigas foram removidas e processadas para inclusão em parafina. Foram estudados os seguintes elementos da parede vesical: Colágeno, músculo liso, fibras do sistema elástico, densidade vascular e do epitélio. Estes parâmetros foram analisados por métodos morfométricos, imunofluorescência e bioquímica. A densidade vascular na lâmina foi reduzida em 40% (p <0,05) no grupo T65. A organização do colágeno foi alterada em T30 e T65, apesar da concentração de colágeno total não ser alterada. O grupo T65 teve um aumento de fibras do sistema elástico. Não houve diferença na altura e na densidade de células epiteliais entre os grupos. Quanto à densidade de fibras musculares lisas, observamos um aumento de 19% (p <0,05) no grupo T65. A administração de corticosterona na fase pré-púbere provoca modificações estruturais na bexiga de ratos afetando de modo significativo o substrato morfológico sob qual repousa a fisiologia vesical. Foi observado também que estas modificações normalmente aparecem num tempo mais longo após o término do tratamento
Resumo:
Os autores têm como objetivo, investigar a matriz extra celular, musculatura lisa e densidade vascular do prepúcio de pacientes tabagistas. Espécimes de prepúcio foram obtidas de 20 jovens adultos (média de idade= 27.2) submetidos a postectomia. Dentre os pacientes analisados, um grupo (n=10) possui história prévia de tabagismo (3 to 13 maços/ano, média = 5.8 3.2), e outro grupo (n=10) formam o grupo controle, não fumantes. A coloração de Tricrômico Masson foi utilizada para quantificar tecido conectivo, musculatura lisa e vasos. A coloração Resorcina-fucsina de Weigert foi utilizada para estabelecer as fibras do sistema elástico e a coloração, Vermelho de Picrosirius para o estudo do colágeno. O estudo estereológico foi realizado utilizando o software Image J, para determinar as densidades volumétricas. Para a análise bioquímica o colágeno total foi determinado em μg de hidroxiprolina por MG de tecido seco. O estudo estatístico foi realizado lançando mão do t-teste (p<0,05). Fibras do sistema elástico de fumantes apresentaram-se aumentadas em 42.5% quando comparado ao grupo controle (p=0,002). Em contraste, musculatura lisa (p=0,42) e densidade vascular (p=0,16) não mostraram nenhuma diferença estatística. Foi realizado uma análise quantitativa utilizando Vermelho de Picrosirius sob luz polarizada, que evidenciou a presença de colágeno tipo I e III, sem diferença estatisticamente significativa. A concentração total do colágeno não mostrou diferença entre tabagistas e o grupo controle. (73.1μg/mg 8.0 vs. 69.2μg/mg 5.9, respectivamente, p=0,23). Tabagismo está associado a um significante aumento de fibras do sistema elástico do tecido prepucial. Estes resultados podem, possivelmente, explicar os altos índices de falha na uretroplastia peniana, com uso de flap de prepúcio em fumantes
Resumo:
Acredita-se que os primeiros progenitores da hematopoese definitiva surjam da diferenciação do endotélio da aorta dorsal, na altura da região da Aorta-Gônada-Mesonefros (AGM). Com o intuito de estudar esta região e o fenótipo das células do endotélio da aorta dorsal nesta posição topográfica, ovos galados de Gallus gallus domesticus L. foram incubados em chocadeira, classificados em estádios de E16 a E25 e processados histotecnologicamente para obtenção de secções seriadas na altura da região AGM. Estas passaram por coloração por Hematoxilina-Eosina, histoquímica para PAS, PAS-diastase e Alcian Blue pH 1.0 e pH 2.5, histoquímica por lectinas fluoresceinadas e imunofluorescência para moléculas de superfície, citoesqueleto e matriz extracelular. Foi observada hipertrofia endotelial no assoalho da aorta nos estádios observados, o qual se apresentava positivo ao PAS, com ocorrência frequente de vacuolizações basais PAS negativas, e o surgimento ocasional de grupamentos celulares intravasculares. Nestes, as células que se destacavam da membrana basal do endotélio expressavam progressivamente mais material PAS positivo, o qual, no entanto, em nenhum momento pareceu se tratar de glicogênio. Em relação às glicosaminoglicanas, notamos a presença predominante de ácido hialurônico por todo o mesênquima da região e em outras estruturas como periferia da notocorda, tubo neural e mesoderma lateral. Ocorreu co-expressão de fibronectina e α-actina de músculo liso em células circunjacentes à aorta, na face ventral do vaso. GFAP e BMP-4 são expressas entre as células do tubo neural e em sua periferia, assim como na notocorda do embrião. As lectinas Abrus precatorius, Lens culinarise Ricinus communis mostraram-se positivas principalmente na região subedotelial do assoalho da aorta nos estádios observados neste trabalho. Bandeiraea simplicifolia exibiu pouca marcação na aorta dorsal e a Arachis hypogeae foi negativa. Outras estruturas da região AGM também expressaram resíduos de açúcares revelados por estas lectinas, tais como: notocorda, tubo neural, mesênquima, intestino primitivo e saco vitelínico. Estes resultados acrescentam elementos morfológicos e bioquímicos ao conhecimento sobre a região AGM de embriões de galinha e sobre o endotélio, possivelmente hemogênico, da aorta dorsal.
Resumo:
As células tronco são caracterizadas pela sua capacidade de se diferenciar em várias linhagens de células e exibir um pontente efeito parácrino. O objetivo deste trabalho foi avaliar o efeito da terapia com células da medula óssea (BMCs) na glicose sanguínea, no metabolismo lipídico e remodelamento da parede da aorta em um modelo experimental para aterosclerose. Camundongos C57BL/6 foram alimentados com uma dieta controle (grupo CO) ou uma dieta aterogênica (grupo AT - 60% gordura). Após 16 semanas, o grupo AT foi dividido em quatro sub grupos: grupo AT 14 dias e o grupo AT 21 dias receberam uma injeção de PBS na veia caudal e mortos 14 e 21 dias após respectivamente; grupo AT-BMC 14 dias e AT-BMC 21 dias que receberam uma injeção com BMCs na veia caudal e mortos 14 e 21 dias após, respectivamente. O grupo CO foi sacrificado juntamente com outros grupos. O transplante BMCs reduziu os niveis de glicose, triglicerídeos e colesterol total no sangue. Não houve diferença significativa em relação à massa corporal entre os grupos transplantados e não transplantados, sendo todos diferentes do grupo CO. Não houve diferença significativa na curva glicemica entre os grupos AT 14 dias, AT-BMC 14 dias e AT 21 dias e estes diferentes do grupo CO e do grupo AT-BMC 21 dias. O Qa (1/mm2) foi quantitativamente reduzido no grupo AT 14 dias e AT 21 dias quando comparado ao grupo CO. Este Qa se mostrou elevado no grupo AT-BMC 21 dias quando comparado a todos os grupos. O aumento da expessura da parede da aorta foi observado em todos os grupos aterogênicos, entretanto o aumento da espessura foi significativamente menor no grupo AT-BMC 21 dias em relação ao grupo AT 14 dias e AT 21 dias. A percentagem de fibras elásticas se apresentou significativamente maior no grupo AT 21 dias quando comparado ao CO e AT-BMC 21 dias. Não houve diferença significativa entre o grupo CO e AT-BMC 21 dias. Vacúolos na túnica média, delaminação e o adelgaçamento das lamelas elásticas foram observados nos grupos AT-14 dias e AT-21 dias. O menor número destes foi visualizado no grupo AT-BMC 14 dias e AT-BMC 21 dias. A imunomarcação para alfa actina de músculo liso (α-SMA) e fator de crescimento vascular e endotelial (VEGF) mostrou menor marcação em grupos transplantados com BMCs. A marcação para antígeno nuclear de proliferação celular (PCNA) mostrou-se mais expressiva no grupo AT-BMC 21 dias grupo. Marcação para CD105, CD133 e CD68 foi observada nos grupos AT 14 dias e AT 21 dias. Estas marcações não foram observadas nos grupos AT-BMC 14 dias e AT-BMC 21 dias. Nas eletromicrografias observamos o remodelamento benéfico no grupo AT-BMC14 dias e AT-BMC 21 dias, com a organização estrutural similar ao grupo CO. Vesículas de pinocitose, projeção da célula muscular lisa e a delaminação da lamina elástica interna são observados nos grupos AT 14 dias e AT 21 dias. Célula endotelial preservada, com lamina elástica interna de contorno regular e contínua é observada no grupo CO e nos grupos AT-BMC 14 dias e AT-BMC 21 dias. Como conclusão, os nossos resultados reforçam o conceito de que, em um modelo aterosclerótico utilizando camundongos e dieta aterogênica, a injeção de BMCs melhora os níveis de glicose, metabolismo lipídico e ocasiona um remodelamento benéfico na parede da aorta.
Resumo:
Wydział Biologii: Instytut Biologii Molekularnej i Biotechnologii
Resumo:
Actinins are cytoskeleton proteins that cross-link actin filaments. Evolution of the actinin family resulted in the formation of Ca++-insensitive muscle isoforms (actinin-2 and- 3) and Ca++-sensitive non-muscle isoforms (actinin-1 and -4) with regard to their actin-binding function. Despite high sequence similarity, unique properties have been ascribed to actinin-4 compared with actinin-1. Actinin-4 is the predominant isoform reported to be associated with the cancer phenotype. Actinin-4, but not actinin-1, is essential for normal glomerular function in the kidney and and is able to translocate to the nucleus to regulate transcription. To understand the molecular basis for such isoform-specific functions I have comprehensively compared these proteins in terms of localisation, migration, alternative splicing, actin-binding properties, heterodimer formation and molecular interactions for the first time. This work characterises a number of commercially available actinin antibodies and in doing so, identifies actinin-1, -2 and -4 isoform-specific antibodies that enabled studies of actinin expression and localisation. This work identifies the actinin rod domain as the predominant domain that influences actinin localisation however localisation is likely to be effected by the entire actinin protein. si-RNA- mediated knockdown of actinin-1 and -4 did not affect migration in a number of cell lines highlighting that migration may only require a fraction of total non-muscle actinin levels. This work finds that the Ca++-insensitive variant of actinin-4 is expressed only in the nervous system and thus cannot be regarded as a smooth muscle isoform, as is the case for the Ca++-insensitive variant of actinin-1. This work also identifies a previously unreported exon 19a+19b expressing variant of actinin-4 in human skeletal muscle. This work finds that alternative splice variants of actinin-1 and -4 are co-expressed in a number of tissues, in particular the brain. In contrast to healthy brain, glioblastoma cells express Ca++-sensitive variants of both actinin-1 and -4. Actin-binding properties of actinin-1 and -4 are similar and are unlikely to explain isoform-specific functions. Surprisingly, this work reveals that actinin-1/-4 heterodimers, rather than homodimers, are the most abundant form of actinin in many cancer cell lines. Taken together this data suggests that actinin-1 and -4 cannot be viewed as distinct entities from each other but rather as proteins that can exist in both homodimeric and heterodimeric forms. Finally, this work employs yeast two-hybrid and proteomic approaches to identify actinin-interacting proteins. In doing so, this work identifies a number of putative actinin-4 specific interacting partners that may help to explain some of the unique functions attributed the actinin-4. The observation of alternative splice variants of actinin-1 and -4 combined with the observed potential of these proteins to form homodimers and heterodimers suggests that homodimers and heterodimers with novel actin-binding properties and interaction networks may exist. The ability to behave in this manner may have functional implications. This may be of importance considering that these proteins are central to such processes as cell migration and adhesion. This significantly alters our view of the non-muscle actinins.
Resumo:
BACKGROUND: Uterine leiomyomas (fibroids) are benign smooth muscle tumors that often contain an excessive extracellular matrix (ECM). In the present study, we investigated the interactions between human uterine leiomyoma (UtLM) cells and uterine leiomyoma-derived fibroblasts (FB), and their importance in cell growth and ECM protein production using a coculture system. RESULTS: We found enhanced cell proliferation, and elevated levels of ECM collagen type I and insulin-like growth factor-binding protein-3 after coculturing. There was also increased secretion of vascular endothelial growth factor, epidermal growth factor, fibroblast growth factor-2, and platelet derived growth factor A and B in the media of UtLM cells cocultured with FB. Protein arrays revealed increased phosphorylated receptor tyrosine kinases (RTKs) of the above growth factor ligands, and immunoblots showed elevated levels of the RTK downstream effector, phospho-mitogen activated protein kinase 44/42 in cocultured UtLM cells. There was also increased secretion of transforming growth factor-beta 1 and 3, and immunoprecipitated transforming growth factor-beta receptor I from cocultured UtLM cells showed elevated phosphoserine expression. The downstream effectors phospho-small mothers against decapentaplegic -2 and -3 protein (SMAD) levels were also increased in cocultured UtLM cells. However, none of the above effects were seen in normal myometrial cells cocultured with FB. The soluble factors released by tumor-derived fibroblasts and/or UtLM cells, and activation of the growth factor receptors and their pathways stimulated the proliferation of UtLM cells and enhanced the production of ECM proteins. CONCLUSIONS: These data support the importance of interactions between fibroid tumor cells and ECM fibroblasts in vivo, and the role of growth factors, and ECM proteins in the pathogenesis of uterine fibroids.