999 resultados para Universal Composition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shepherd's "weekly parametric" method for estimating the parameter L sub( infinity ) and K of the von Bertalanffy growth function from length-frequency data often fails to converge, and usually overestimates K. It is shown that this is due to overcounting of the frequencies associated with large, slow growing fish, and that both of these problems can be completely overcome by a simple change in the way the scoring function is formulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential for growth overfishing in the white shrimp, Litopenaeus setiferus, fishery of the northern Gulf of Mexico appears to have been of limited concern to Federal or state shrimp management entities, following the cataclysmic drop in white shrimp abundance in the 1940’s. As expected from surplus production theory, a decrease in size of shrimp in the annual landings accompanies increasing fishing effort, and can eventually reduce the value of the landings. Growth overfishing can exacerbate such decline in value of the annual landings. We characterize trends in size-composition of annual landings and other annual fishery-dependent variables in this fishery to determine relationships between selected pairs of these variables and to determine whether growth overfishing occurred during 1960–2006. Signs of growth overfishing were equivocal. For example, as nominal fishing effort increased, the initially upward, decelerating trend in annual yield approached a local maximum in the 1980’s. However, an accelerating upward trend in yield followed as effort continued to increase. Yield then reached its highest point in the time series in 2006, as nominal fishing effort declined due to exogenous factors outside the control of shrimp fishery managers. The quadratic relationship between annual yield and nominal fishing effort exhibited a local maximum of 5.24(107) pounds (≈ MSY) at a nominal fishing effort level of 1.38(105) days fished. However, annual yield showed a continuous increase with decrease in size of shrimp in the landings. Annual inflation-adjusted ex-vessel value of the landings peaked in 1989, preceded by a peak in annual inflation-adjusted ex-vessel value per pound (i.e. price) in 1983. Changes in size composition of shrimp landings and their economic effects should be included among guidelines for future management of this white shrimp

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term trends in the elasmobranch assemblage of Elkhorn Slough, Monterey Bay, California, were analyzed by documenting species composition and catch per unit effort (CPUE) from 55 sport fishing derbies that occurred during May, June, and July, from 1951 until 1995. The most abundant species (bat ray, Myliobatis californica; shovelnose guitarfish, Rhinobatos productus; and leopard shark, Triakis semifasciata) were also analyzed for size-weight relationships, trends in size class distribution, stage of maturity, and sex ratios. Changes in species composition over the course of the derbies included the near complete disappearance of shovelnose guitarfish by the 1970’s and a slight increase in the abundance of minor species (mainly smoothhounds, Mustelus spp., and thornback, Platyrhinoidis triseriata) starting in the mid 1960’s. The relative abundance of bat rays in the catch steadily increased over the years while the relative abundance of leopard sharks declined during the last two decades. However the average number of bat rays and leopard sharks caught per derby declined during the last two decades. Fishing effort appeared to increase over the course of the derbies. There were no dramatic shifts in the size class distribution data for bat rays, leopard sharks, or shovelnose guitarfish. The catch of bat rays and leopard sharks was consistently dominated by immature individuals, while the catch of shovelnose guitarfish was heavily dominated by adults. There was evidence of sexual segregation in either immature or mature fish in all the species. Female bat rays and shovelnose guitarfish were larger than their male counterparts and outnumbered males nearly 2:1. Female and male leopard sharks were more nearly equal in size and sex ratio. Changes in species composition are likely due to fishing pressure, shifts in the prevailing oceanographic conditions, and habitat alteration in Elkhorn Slough. The sex ratios, stage of maturity, and size class distributions provide further evidence for the theory that Elkhorn Slough functions as a nursery habitat for bat rays and leopard sha

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2001, representative samples of adult Columbia Basin chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho salmon (O. kisutch) populations at Bonneville Dam were collected. Fish were trapped, anesthetized, sampled for scales and biological data, revived, and then released adult migrating salmonids. Scales were examined to estimate age composition; the results contributed to an ongoing database for age class structure of Columbia Basin salmon populations. Based on scale analysis of chinook salmon, four-year-old fish (from brood year [BY] 1997) comprised 88% of the spring chinook, 67% of the summer chinook, and 42% of the Bright fall chinook salmon population. Five-year-old fish (BY 1996) comprised 9% of the spring chinook, 14% of the summer chinook, and 9% of the fall chinook salmon population. The sockeye salmon population at Bonneville was predominantly four-year-old fish (81%), with 18% returning as five-year-olds in 2001. The coho salmon population was 96% three-year-old fish (Age 1.1). Length analysis of the 2001 returns indicated that chinook salmon with a stream-type life history are larger (mean length) than the chinook salmon with an ocean-type life history. Trends in mean length over the sampling period for returning 2001 chinook salmon were analyzed. Chinook salmon of age classes 0.2 and 1.3 show a significant increase in mean length over time. Age classes 0.1, 0.3, 0.4, 1.1, 1.2, and 1.4 show no significant change over time. A year class regression over the past 12 years of data was used to predict spring, summer, and Bright fall chinook salmon population sizes for 2002. Based on three-year-old returns, the relationship predicts four-year-old returns of 132,600 (± 46,300, 90% predictive interval [PI]) spring chinook and 44,200 (± 11,700, 90% PI) summer chinook salmon for the 2002 runs. Based on four-year-old returns, the relationship predicts five-year-old returns of 87,800 (± 54,500, 90% PI) spring, 33,500 (± 11,500, 90% PI) summer, and 77,100 (± 25,800, 90% PI) Bright fall chinook salmon for the 2002 runs. The 2002 run size predictions should be used with caution; some of these predictions are well beyond the range of previously observed data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2000, representative samples of adult Columbia Basin chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho salmon (O. kisutch), populations were collected at Bonneville Dam. Fish were trapped, anesthetized, sampled for scales and biological data, allowed to revive, and then released. Scales were examined to estimate age composition and the results contribute to an ongoing database for age class structure of Columbia Basin salmon populations. Based on scale analysis, four-year-old fish (from brood year (BY) 1996) were estimated to comprise 83% of the spring chinook, 31% of the summer chinook, and 32% of the upriver bright fall chinook salmon population. Five-year-old fish (BY 1995) were estimated to comprise 2% of the spring chinook, 26% of the summer chinook, and 40% of the fall chinook salmon population. Three-year-old fish (BY 1997) were estimated to comprise 14% of the spring chinook, 42% of the summer chinook, and 17% of the fall chinook salmon population. Two-year-olds accounted for approximately 11% of the fall chinook population. The sockeye salmon population sampled at Bonneville was predominantly four-year-old fish (95%), and the coho salmon population was 99.9% three-year-old fish (Age 1.1). Length analysis of the 2000 returns indicated that chinook salmon with a stream-type life history are larger (mean length) than the chinook salmon with an ocean-type life history. Trends in mean length over the sampling period were also analysis for returning 2000 chinook salmon. Fish of age classes 0.2, 1.1, 1.2, and 1.3 have a significant increase in mean length over time. Age classes 0.3 and 0.4 have no significant change over time and age 0.1 chinook salmon had a significant decrease in mean length over time. A year class regression over the past 11 years of data was used to predict spring and summer chinook salmon population sizes for 2001. Based on three-year-old returns, the relationship predicts four-year-old returns of 325,000 (± 111,600, 90% Predictive Interval [PI]) spring chinook and 27,800 (± 29,750, 90% PI) summer chinook salmon. Based on four-year-old returns, the relationship predicts five-year-old returns of 54,300 (± 40,600, 90% PI) spring chinook and 11,000 (± 3,250, 90% PI) summer chinook salmon. The 2001 run size predictions used in this report should be used with caution, these predictions are well beyond the range of previously observed data.