981 resultados para Ultrahigh Vacuum Chemical Vapor Deposition
Resumo:
Tubular graphite cones (TGCs) with a single-crystal nanotip have been achieved by means of microwave plasma-assisted chemical vapor deposition using in-situ-evaporated Fe catalysts. The absence of the disorder-induced D band in Raman spectra revealed the single-crystalline feature of the nanotip. TGCs were found to stem from Fe catalytic carbon spherules on the order of 100 mum diameter, whose critical role in promoting both nucleation and plasma annealing in the formation of highly crystalline TGCs is discussed. The crystalline quality of such TGCs can be further verified by the investigation of their oxidative stability in air. All TGCs can survive up to 600 degrees C without any structural variations, and a few TGCs still survive with an anisotropic etched and stepped nanotip at temperatures up to 800 degrees C, much better than CNTs. Thus, TGCs with single crystalline nanotips are potential candidates for scanning probes in high-temperature oxygen-containing environments.
Resumo:
Many applications of nanotubes and nanowires require controlled bottom-up engineering of these nanostructures. In catalytic chemical vapor deposition, the thermo-kinetic state of the nanocatalysts near the melting point is one of the factors ruling the morphology of the grown structures. We present theoretical and experimental evidence of a viscous state for nanoparticles near their melting point. The state exists over a temperature range scaling inversely with the catalyst size, resulting in enhanced self-diffusion and fluidity across the solid-liquid transformation. The overall effect of this phenomenon on the growth of nanotubes is that, for a given temperature, smaller nanoparticles have a larger reaction rate than larger catalysts.
Resumo:
An alternative method for seeding catalyst nanoparticles for carbon nanotubes and nanowires growth is presented. Ni nanoparticles are formed inside a 450 nm SiO2 film on (100) Si wafers through the implantation of Ni ions at fluences of 7.5×1015 and 1.7×1016 ions.cm-2 and post-annealing treatments at 700, 900 and 1100°C. After exposed to the surface by HF dip etching, the Ni nanoparticles are used as catalyst for the growth of vertically aligned carbon nanotubes by direct current plasma enhanced chemical vapor deposition. © 2007 Materials Research Society.
Resumo:
We report high hole and electron mobilities in nanocrystalline silicon (nc-Si:H) top-gate staggered thin-film transistors (TFTs) fabricated by direct plasma-enhanced chemical vapor deposition (PECVD) at 260°C. The n-channel nc-Si:H TFT with n+ nc-Si:H ohmic contacts shows a field-effect electron mobility (μnFE) of 130 cm2/Vs, which increases to 150 cm2/Vs with Cr-silicide contacts, along with a field-effect hole mobility (μhFE) of 25 cm2/Vs. To the best of our knowledge, the hole and electron mobilities reported here are the highest achieved to date using direct PECVD. © 2005 IEEE.
Resumo:
Film bulk acoustic resonator (FBAR) devices with carbon nanotube (CNT) electrodes directly grown on a ZnO film by thermal chemical vapor deposition have been fabricated. CNT electrodes possess a very low density and high acoustic impedance, which reduces the intrinsic mass loading effect resulting from the electrodes' weight and better confines the longitudinal acoustic standing waves inside the resonator, in turn providing a resonator with a higher quality factor. The influence of the CNTs on the frequency response of the FBAR devices was studied by comparing two identical sets of devices; one set comprised FBARs fabricated with chromium/ gold bilayer electrodes, and the second set comprised FBARs fabricated with CNT electrodes. It was found that the CNTs had a significant effect on attenuating traveling waves at the surface of the FBARs' membranes because of their high elastic stiffness. Three-dimensional finite element analysis of the devices fabricated was carried out, and the numerical simulations were consistent with the experimental results obtained. © 2011 IEEE.
Resumo:
We present electronically controlled field emission characteristics of arrays of individually ballasted carbon nanotubes synthesized by plasma-enhanced chemical vapor deposition on silicon-on-insulator substrates. By adjusting the source-drain potential we have demonstrated the ability to controllable limit the emission current density by more than 1 order of magnitude. Dynamic control over both the turn-on electric field and field enhancement factor have been noted. A hot electron model is presented. The ballasted nanotubes are populated with hot electrons due to the highly crystalline Si channel and the high local electric field at the nanotube base. This positively shifts the Fermi level and results in a broad energy distribution about this mean, compared to the narrow spread, lower energy thermalized electron population in standard metallic emitters. The proposed vertically aligned carbon nanotube field-emitting electron source offers a viable platform for X-ray emitters and displays applications that require accurate and highly stable control over the emission characteristics.
Resumo:
Field emission properties of single-walled carbon nanotubes (SWCNTs), which were prepared through alcohol catalytic chemical vapor deposition for 10-60s, were characterized in a diode configuration. Protrusive bundles at the top surface of samples act selectively as emission sites. The number of emission sites was controlled by emitter morphologies combined with texturing of Si substrates. SWCNTs grown on a textured Si substrate exhibited a turn-on field as low as 2.4 V/μm at a field emission current density of 1 μA/cm 2. Uniform spatial luminescence (0.5 cm2) from the rear surface of the anode was revealed for SWCNTs prepared on the textured Si substrate. Deterioration of field emission properties through repetitive measurements was reduced for the textured samples in comparison with vertically aligned SWCNTs and a random network of SWCNTs prepared on flat Si substrates. Emitter morphology resulting in improved field emission properties is a crucial factor for the fabrication of SWCNT-electron sources. Morphologically controlled SWCNTs with promising emitter performance are expected to be practical electron sources. © 2008 The Japan Society of Applied Physics.
Resumo:
Establishing fabrication methods of carbon nanotubes (CNTs) is essential to realize many applications expected for CNTs. Catalytic growth of CNTs on substrates by chemical vapor deposition (CVD) is promising for direct fabrication of CNT devices, and catalyst nanoparticles play a crucial role in such growth. We have developed a simple method called "combinatorial masked deposition (CMD)", in which catalyst particles of a given series of sizes and compositions are formed on a single substrate by annealing gradient catalyst layers formed by sputtering through a mask. CMD enables preparation of hundreds of catalysts on a wafer, growth of single-walled CNTs (SWCNTs), and evaluation of SWCNT diameter distributions by automated Raman mapping in a single day. CMD helps determinations of the CVD and catalyst windows realizing millimeter-tall SWCNT forest growth in 10 min, and of growth curves for a series of catalysts in a single measurement when combined with realtime monitoring. A catalyst library prepared using CMD yields various CNTs, ranging from individuals, networks, spikes, and to forests of both SWCNTs and multi-walled CNTs, and thus can be used to efficiently evaluate self-organized CNT field emitters, for example. The CMD method is simple yet effective for research of CNT growth methods. © 2010 The Japan Society of Applied Physics.
Resumo:
In addition to the structural control of individual carbon nanotubes (CNTs), the morphological control of their assemblies is crucial to realize miniaturized CNT devices. Microgradients in the thickness of catalyst are used to enrich the variety of available self-organized morphologies of CNTs. Microtrenches were fabricated in gate/spacer/cathode trilayers using a conventional self-aligned top-down process and catalyst exhibiting a microgradient in its thickness was formed on the cathode by sputter deposition through gate slits. CNTs, including single-walled CNTs, of up to 1μm in length were grown within 5-15 s by chemical vapor deposition. The tendency of thin CNTs to aggregate caused interactions between CNTs with different growth rates, yielding various morphologies dependent on the thickness of the catalyst. The field emission properties of several types of CNT assemblies were evaluated. The ability to produce CNTs with tailored morphologies by engineering the spatial distribution of catalysts will enhance their performance in devices. © 2011 The Japan Society of Applied Physics.
Resumo:
Angular field emission (FE) properties of vertically aligned carbon nanotube arrays have been measured on samples grown by plasma enhanced chemical vapor deposition and characterized by scanning electron microscope and I-V measurements. These properties determine the angular divergence of electron beams, a crucial parameter in order to obtain high brilliance FE based cathodes. From angular distributions of the electron beam transmitted through extraction grids of different mesh size and by using ray-tracing simulations, the maximum emission angle from carbon nanotube tips has been determined to be about ± 30 around the tube main axis. © 2012 American Institute of Physics.
Resumo:
Scalable growth is essential for graphene-based applications. Recent development has enabled the achievement of the scalability by use of chemical vapor deposition (CVD) at 1000°C with copper as a catalyst and methane as a precursor gas. Here we report our observation of early stage of graphene growth based on an ethylene-based CVD method, capable of reducing the growth temperature to 770°C for monolayer graphene growth on copper. We track the early stages of slow growth under low ethylene flow rate and observe the graphene domain evolution by varying the temperature and growth time. Temperature-dependence of graphene domain density gives an apparent activation energy of 1.0 eV for nucleation.
Resumo:
Low-temperature (∼600 °C), scalable chemical vapor deposition of high-quality, uniform monolayer graphene is demonstrated with a mapped Raman 2D/G ratio of >3.2, D/G ratio ≤0.08, and carrier mobilities of ≥3000 cm(2) V(-1) s(-1) on SiO(2) support. A kinetic growth model for graphene CVD based on flux balances is established, which is well supported by a systematic study of Ni-based polycrystalline catalysts. A finite carbon solubility of the catalyst is thereby a key advantage, as it allows the catalyst bulk to act as a mediating carbon sink while optimized graphene growth occurs by only locally saturating the catalyst surface with carbon. This also enables a route to the controlled formation of Bernal stacked bi- and few-layered graphene. The model is relevant to all catalyst materials and can readily serve as a general process rationale for optimized graphene CVD.
Resumo:
We report on graphene-passivated ferromagnetic electrodes (GPFE) for spin devices. GPFE are shown to act as spin-polarized oxidation-resistant electrodes. The direct coating of nickel with few layer graphene through a readily scalable chemical vapor deposition (CVD) process allows the preservation of an unoxidized nickel surface upon air exposure. Fabrication and measurement of complete reference tunneling spin valve structures demonstrate that the GPFE is maintained as a spin polarizer and also that the presence of the graphene coating leads to a specific sign reversal of the magneto-resistance. Hence, this work highlights a novel oxidation-resistant spin source which further unlocks low cost wet chemistry processes for spintronics devices.
Resumo:
We study the Fe-catalyzed chemical vapor deposition of carbon nanotubes by complementary in situ grazing-incidence X-ray diffraction, in situ X-ray reflectivity, and environmental transmission electron microscopy. We find that typical oxide supported Fe catalyst films form widely varying mixtures of bcc and fcc phased Fe nanoparticles upon reduction, which we ascribe to variations in minor commonly present carbon contamination levels. Depending on the as-formed phase composition, different growth modes occur upon hydrocarbon exposure: For γ-rich Fe nanoparticle distributions, metallic Fe is the active catalyst phase, implying that carbide formation is not a prerequisite for nanotube growth. For α-rich catalyst mixtures, Fe3C formation more readily occurs and constitutes part of the nanotube growth process. We propose that this behavior can be rationalized in terms of kinetically accessible pathways, which we discuss in the context of the bulk iron-carbon phase diagram with the inclusion of phase equilibrium lines for metastable Fe3C. Our results indicate that kinetic effects dominate the complex catalyst phase evolution during realistic CNT growth recipes. © 2012 American Chemical Society.
Resumo:
Thin films (100-500 nm) of the Si:O alloy have been systematically characterized in the optical absorption and electrical transport behavior, by varying the Si content from 43 up to 100 at. %. Magnetron sputtering or plasma enhanced chemical vapor deposition have been used for the Si:O alloy deposition, followed by annealing up to 1250 °C. Boron implantation (30 keV, 3-30× 1014 B/cm2) on selected samples was performed to vary the electrical sheet resistance measured by the four-point collinear probe method. Transmittance and reflectance spectra have been extracted and combined to estimate the absorption spectra and the optical band gap, by means of the Tauc analysis. Raman spectroscopy was also employed to follow the amorphous-crystalline (a-c) transition of the Si domains contained in the Si:O films. The optical absorption and the electrical transport of Si:O films can be continuously and independently modulated by acting on different parameters. The light absorption increases (by one decade) with the Si content in the 43-100 at. % range, determining an optical band gap which can be continuously modulated into the 2.6-1.6 eV range, respectively. The a-c phase transition in Si:O films, causing a significant reduction in the absorption coefficient, occurs at increasing temperatures (from 600 to 1100 °C) as the Si content decreases. The electrical resistivity of Si:O films can be varied among five decades, being essentially dominated by the number of Si grains and by the doping. Si:O alloys with Si content in the 60-90 at. % range (named oxygen rich silicon films), are proved to join an appealing optical gap with a viable conductivity, being a good candidate for increasing the conversion efficiency of thin-film photovoltaic cell. © 2010 American Institute of Physics.