924 resultados para Tyrosine kinase receptor
Resumo:
Hepatocyte growth factor (HGF), also known as scatter factor, is a powerful motogen, mitogen, and morphogen produced by cells of mesodermal origin, acting on epithelial and endothelial cells. Its receptor is the tyrosine kinase encoded by the c-MET protooncogene. We show that the HGF receptor is expressed by human primary osteoclasts, by osteoclast-like cell lines, and by osteoblasts. In both cell lineages, HGF stimulation triggers the receptor kinase activity and autophosphorylation. In osteoclasts, HGF receptor activation is followed by increase in intracellular Ca2+ concentration and by activation of the pp60c-Src kinase. HGF induces changes in osteoclast shape and stimulates chemotactic migration and DNA replication. Osteoblasts respond to HGF by entering the cell cycle, as indicated by stimulation of DNA synthesis. Interestingly, osteoclasts were found to synthesize and secrete biologically active HGF. These data strongly suggest the possibility of an autocrine regulation of the osteoclast by HGF and a paracrine regulation of the osteoblast by the HGF produced by the osteoclast.
Resumo:
Germ-line missense mutations of the receptor-like tyrosine kinase ret are the causative genetic event of the multiple endocrine neoplasia (MEN) type 2A and type 2B syndromes and of the familial medullary thyroid carcinoma. We have used the rat pheochromocytoma cell line, PC12, as a model system to investigate the mechanism or mechanisms by which expression of activated ret alleles contributes to the neoplastic phenotype in neuroendocrine cells. Here we show that stable expression of ret mutants (MEN2A and MEN2B alleles) in PC12 cells causes a dramatic conversion from a round to a flat morphology, accompanied by the induction of genes belonging to the early as well as the delayed response to nerve growth factor. However, in the transfected PC12 cells, the continuous expression of neuronal specific genes is not associated with the suppression of cell proliferation. Furthermore, expression of ret mutants renders PC12 cells unresponsive to nerve growth factor-induced inhibition of proliferation. These results suggest that induction of an aberrant pattern of differentiation, accompanied by unresponsiveness to growth-inhibitory physiological signals, may be part of the mechanism of action of activated ret alleles in the pathogenesis of neuroendocrine tumors associated with MEN2 syndromes.
Resumo:
We have molecularly cloned a cDNA encoding a protein uniquely expressed and hyperphosphorylated at tyrosine residues in a Ki-1 lymphoma cell that contained chromosomal translocation t(2;5). The encoded protein p80 was shown to be generated by fusion of a protein-tyrosine kinase and a nucleolar protein B23/nucleophosmin (NPM). The coding sequence of this cDNA turned out to be virtually identical to that of the fusion cDNA for NPM-anaplastic lymphoma kinase (ALK) previously cloned from the transcript of the gene at the breakpoint of the same translocation. Overexpression of p80 in NIH 3T3 cells induced neoplastic transformation, suggesting that the p80 kinase is aberrantly activated. The normal form of p80 was predicted to be a receptor-type tyrosine kinase on the basis of its sequence similarity to the insulin receptor family of kinases. However, an immunofluorescence study using COS cells revealed that p80 was localized to the cytoplasm. Thus, subcellular translocation and activation of the tyrosine kinase presumably by its structural alteration would cause the malignant transformation. We also showed that a mutant p80 lacking the NPM portion was unable to transform NIH 3T3 cells. Thus, the NPM sequence is essential for the transforming activity, suggesting that the chromosomal translocation is responsible for the oncogenesis. Finally, Shc and insulin receptor substrate 1 (IRS-1) were tyrosine-phosphorylated and bound to p80 in p80-transformed cells. However, mutants of p80 that were defective for binding to and phosphorylation of Shc and insulin receptor substrate 1 could transform NIH 3T3 cells. Association of these mutants with GRB2 was still observed, suggesting that interaction of p80 with GRB2 but not with Shc or IRS-1 was relevant for cell transformation.
Resumo:
Mice carrying mutations in either the dominant white-spotting (W) or Steel (Sl) loci exhibit deficits in melanogenesis, gametogenesis, and hematopoiesis. W encodes the Kit receptor tyrosine kinase, while Sl encodes the Kit ligand, Steel factor, and the receptor-ligand pair are contiguously expressed at anatomical sites expected from the phenotypes of W and Sl mice. The c-kit and Steel genes are also both highly expressed in the adult murine hippocampus: Steel is expressed in dentate gyrus neurons whose mossy fiber axons synapse with the c-kit expressing CA3 pyramidal neurons. We report here that Sl/Sld mutant mice have a specific deficit in spatial learning. These mutant mice are also deficient in baseline synaptic transmission between the dentate gyrus and CA3 but show normal long-term potentiation in this pathway. These observations demonstrate a role for Steel factor/Kit signaling in the adult nervous system and suggest that a severe deficit in hippocampal-dependent learning need not be associated with reduced hippocampal long-term potentiation.
Resumo:
Regulation of ion channel function by intracellular processes is fundamental for controlling synaptic signaling and integration in the nervous system. Currents mediated by N-methyl-D-aspartate (NMDA) receptors decline during whole-cell recordings and this may be prevented by ATP. We show here that phosphorylation is necessary to maintain NMDA currents and that the decline is not dependent upon Ca2+. A protein tyrosine phosphatase or a peptide inhibitor of protein tyrosine kinase applied intracellularly caused a decrease in NMDA currents even when ATP was included. On the other hand, pretreating the neurons with a membrane-permeant tyrosine kinase inhibitor occluded the decline in NMDA currents when ATP was omitted. In inside-out patches, applying a protein tyrosine phosphatase to the cytoplasmic face of the patch caused a decrease in probability of opening of NMDA channels. Conversely, open probability was increased by a protein tyrosine phosphatase inhibitor. These results indicate that NMDA channel activity is reduced by a protein tyrosine phosphatase associated with the channel complex.
Resumo:
The leukemogenic tyrosine kinase fusion protein Bcr-Abl activates a Ras-dependent pathway required for transformation. To examine subsequent signal transduction events we measured the effect of Bcr-Abl on two mitogen-activated protein kinase (MAPK) cascades--the extracellular signal-regulated kinase (ERK) pathway and the Jun N-terminal kinase (JNK) pathway. We find that Bcr-Abl primarily activates JNK in fibroblasts and hematopoietic cells. Bcr-Abl enhances JNK function as measured by transcription from Jun responsive promoters and requires Ras, MEK kinase (MAPK/ERK kinase kinase), and JNK to do so. Dominant-negative mutants of c-Jun, which inhibit the endpoint of the JNK pathway, impair Bcr-Abl transforming activity. These findings implicate the JNK pathway in transformation by a human leukemia oncogene.
Resumo:
Growth factor-binding protein 2 (Grb2) is an adaptor protein that links tyrosine kinases to Ras. BCR-ABL is a tyrosine kinase oncoprotein that is implicated in the pathogenesis of Philadelphia chromosome (Ph1)-positive leukemias. Grb2 forms a complex with BCR-ABL and the nucleotide exchange factor Sos that leads to the activation of the Ras protooncogene. In this report we demonstrate that Grb2 mutant proteins lacking amino- or carboxyl-terminal src homology SH3 domains suppress BCR-ABL-induced Ras activation and reverse the oncogenic phenotype. The Grb2 SH3-deletion mutant proteins bind to BCR-ABL and do not impair tyrosine kinase activity. Expression of the Grb2 SH3-deletion mutant proteins in BCR-ABL-transformed Rat-1 fibroblasts and in the human Ph1-positive leukemic cell line K562 inhibits their ability to grow as foci in soft agar and form tumors in nude mice. Furthermore, expression of the Grb2 SH3-deletion mutants in K562 cells induced their differentiation. Because Ras plays an important role in signaling by receptor and nonreceptor tyrosine kinases, the use of interfering mutant Grb2 proteins may be applied to block the proliferation of other cancers that depend in part on activated tyrosine kinases for growth.
Resumo:
Ras CAAX (C = cysteine, A = aliphatic amino acid, and X = any amino acid) peptidomimetic inhibitors of farnesyl protein transferase suppress Ras-dependent cell transformation by preventing farnesylation of the Ras oncoprotein. These compounds are potential anticancer agents for tumors associated with Ras mutations. The peptidomimetic FTI-254 was tested for Ras1-inhibiting activity in whole animals by injection of activated Ras1val12 Drosophila larvae. FTI-254 decreased the ability of Ras1val12 to form supernumerary R7 photoreceptor cells in the compound eye of transformed flies. In contrast, it had no effect on the related supernumerary R7 phenotypes of flies transformed with either the activated sevenless receptor tyrosine kinase, Raf kinase, or a chimeric Ras1val12 protein that is membrane associated through myristylation instead of isoprenylation. Therefore, FTI-254 acts as an isoprenylation inhibitor to selectively inhibit Ras1val12 signaling activity in a whole-animal model system.
Resumo:
CD19 receptor is expressed at high levels on human B-lineage lymphoid cells and is physically associated with the Src protooncogene family protein-tyrosine kinase Lyn. Recent studies indicate that the membrane-associated CD19-Lyn receptor-enzyme complex plays a pivotal role for survival and clonogenicity of immature B-cell precursors from acute lymphoblastic leukemia patients, but its significance for mature B-lineage lymphoid cells (e.g., B-lineage lymphoma cells) is unknown. CD19-associated Lyn kinase can be selectively targeted and inhibited with B43-Gen, a CD19 receptor-specific immunoconjugate containing the naturally occurring protein-tyrosine kinase inhibitor genistein (Gen). We now present experimental evidence that targeting the membrane-associated CD19-Lyn complex in vitro with B43-Gen triggers rapid apoptotic cell death in highly radiation-resistant p53-Bax- Ramos-BT B-lineage lymphoma cells expressing high levels of Bcl-2 protein without affecting the Bcl-2 expression level. The therapeutic potential of this membrane-directed apoptosis induction strategy was examined in a scid mouse xenograft model of radiation-resistant high-grade human B-lineage lymphoma. Remarkably, in vivo treatment of scid mice challenged with an invariably fatal number of Ramos-BT cells with B43-Gen at a dose level < 1/10 the maximum tolerated dose resulted in 70% long-term event-free survival. Taken together, these results provide unprecedented evidence that the membrane-associated anti-apoptotic CD19-Lyn complex may be at least as important as Bcl-2/Bax ratio for survival of lymphoma cells.
Resumo:
Detergent-resistant plasma membrane structures, such as caveolae, have been implicated in signalling, transport, and vesicle trafficking functions. Using sucrose gradient ultracentrifugation, we have isolated low-density, Triton X-100-insoluble membrane domains from RBL-2H3 mucosal mast cells that contain several markers common to caveolae, including a src-family tyrosine kinase, p53/56lyn. Aggregation of Fc epsilon RI, the high-affinity IgE receptor, causes a significant increase in the amount of p53/56lyn associated with these low-density membrane domains. Under our standard conditions for lysis, IgE-Fc epsilon RI fractionates with the majority of the solubilized proteins, whereas aggregated receptor complexes are found at a higher density in the gradient. Stimulated translocation of p53/56lyn is accompanied by increased tyrosine phosphorylation of several proteins in the low-density membrane domains as well as enhanced in vitro tyrosine kinase activity toward these proteins and an exogenous substrate. With a lower detergent-to-cell ratio during lysis, significant Fc epsilon RI remains associated with these membrane domains, consistent with the ability to coimmunoprecipitate tyrosine kinase activity with Fc epsilon RI under similar lysis conditions [Pribluda, V. S., Pribluda, C. & Metzger, H. (1994) Proc. Natl. Acad. Sci. USA 91, 11246-11250]. These results indicate that specialized membrane domains may be directly involved in the coupling of receptor aggregation to the activation of signaling events.
Resumo:
The mechanism of mitogen-activated protein (MAP) kinase activation by pertussis toxin-sensitive Gi-coupled receptors is known to involve the beta gamma subunits of heterotrimeric G proteins (G beta gamma), p21ras activation, and an as-yet-unidentified tyrosine kinase. To investigate the mechanism of G beta gamma-stimulated p21ras activation, G beta gamma-mediated tyrosine phosphorylation was examined by overexpressing G beta gamma or alpha 2-C10 adrenergic receptors (ARs) that couple to Gi in COS-7 cells. Immunoprecipitation of phosphotyrosine-containing proteins revealed a 2- to 3-fold increase in the phosphorylation of two proteins of approximately 50 kDa (designated as p52) in G beta gamma-transfected cells or in alpha 2-C10 AR-transfected cells stimulated with the agonist UK-14304. The latter response was pertussis toxin sensitive. These proteins (p52) were also specifically immunoprecipitated with anti-Shc antibodies and comigrated with two Shc proteins, 46 and 52 kDa. The G beta gamma- or alpha 2-C10 AR-stimulated p52 (Shc) phosphorylation was inhibited by coexpression of the carboxyl terminus of beta-adrenergic receptor kinase (a G beta gamma-binding pleckstrin homology domain peptide) or by the tyrosine kinase inhibitors genistein and herbimycin A, but not by a dominant negative mutant of p21ras. Worthmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K) inhibited phosphorylation of p52 (Shc), implying involvement of PI3K. These results suggest that G beta gamma-stimulated Shc phosphorylation represents an early step in the pathway leading to p21ras activation, similar to the mechanism utilized by growth factor tyrosine kinase receptors.
Resumo:
Tsk/Itk and Btk are members of the pleckstrin-homology (PH) domain-containing tyrosine kinase family. The PH domain has been demonstrated to be able to interact with beta gamma subunits of heterotrimeric guanine nucleotide-binding proteins (G proteins) (G beta gamma) and phospholipids. Using cotransfection assays, we show here that the kinase activities of Tsk and Btk are stimulated by certain G beta gamma subunits. Furthermore, using an in vitro reconstitution assay with purified bovine brain G beta gamma subunits and the immunoprecipitated Tsk, we find that Tsk kinase activity is increased by G beta gamma subunits and another membrane factor(s). These results indicate that this family of tyrosine kinases could be an effector of heterotrimeric G proteins.
Resumo:
A causal role has been inferred for ERBB2 overexpression in the etiology of breast cancer and other epithelial malignancies. The development of therapeutics that inhibit this tyrosine kinase cell surface receptor remains a high priority. This report describes the specific downregulation of ERBB2 protein and mRNA in the breast cancer cell line SK-BR-3 by using antisense DNA phosphorothioates. An approach was developed to examine antisense effects which allows simultaneous measurements of antisense dose and gene specific regulation on a per cell basis. A fluorescein isothiocyanate end-labeled tracer oligonucleotide was codelivered with antisense DNA followed by immunofluorescent staining for ERBB2 protein expression. Two-color flow cytometry measured the amount of both intracellular oligonucleotide and ERBB2 protein. In addition, populations of cells that received various doses of nucleic acids were physically separated and studied. In any given transfection, a 100-fold variation in oligonucleotide dosage was found. ERBB2 protein expression was reduced greater than 50%, but only in cells within a relatively narrow uptake range. Steady-state ERBB2 mRNA levels were selectively diminished, indicating a specific antisense effect. Cells receiving the optimal antisense dose were sorted and analyzed for cell cycle changes. After 2 days of ERBB2 suppression, breast cancer cells showed an accumulation in the G1 phase of the cell cycle.
Resumo:
Many studies have characterized the transmembrane signaling events initiated after T-cell antigen receptor recognition of major histocompatibility complex (MHC)-bound peptides. Yet, little is known about signal transduction from a set of MHC class I recognizing receptors on natural killer (NK) cells whose ligation dramatically inhibits NK cell-mediated killing. In this study we evaluated the influence of MHC recognition on the proximal signaling events in NK cells binding tumor targets. We utilized two experimental models where NK cell-mediated cytotoxicity was fully inhibited by the recognition of specific MHC class I molecules. NK cell binding to either class I-deficient or class I-transfected target cells initiated rapid protein tyrosine kinase activation. In contrast, whereas NK cell binding to class I-deficient targets led to inositol phosphate release and increased intracellular free calcium ([Ca2+]i), NK recognition of class I-bearing targets did not induce the activation of these phospholipase C-dependent signaling events. The recognition of class I by NK cells clearly had a negative regulatory effect since blocking this interaction using anti-class I F(ab')2 fragments increased inositol 1,4,5-trisphosphate release and [Ca2+]i and increased the lysis of the targets. These results suggest that one of the mechanisms by which NK cell recognition of specific MHC class I molecules can block the development of cell-mediated cytotoxicity is by inhibiting specific critical signaling events.
Resumo:
A strategy based on the gene trap was developed to prescreen mouse embryonic stem cells for insertional mutations in genes encoding secreted and membrane-spanning proteins. The "secretory trap" relies on capturing the N-terminal signal sequence of an endogenous gene to generate an active beta-galactosidase fusion protein. Insertions were found in a cadherin gene, an unc6-related laminin (netrin) gene, the sek receptor tyrosine kinase gene, and genes encoding two receptor-linked protein-tyrosine phosphatases, LAR and PTP kappa. Analysis of homozygous mice carrying insertions in LAR and PTP kappa showed that both genes were effectively disrupted, but neither was essential for normal embryonic development.