984 resultados para Tunnels -- Excavation
Resumo:
The Vertical Clearance Log is prepared for the purpose of providing vertical clearance restrictions by route on the primary road system. This report is used by the Iowa Department of Transportation’s Motor Carrier Services to route oversize vehicles around structures with vertical restrictions too low for the cargo height. The source of the data is the Geographic Information Management System (GIMS) that is managed by the Office of Research & Analytics in the Performance & Technology Division. The data is collected by inspection crews and through the use of LiDAR technology to reflect changes to structures on the primary road system. This log is produced annually.
Resumo:
The purpose of performance measures in planning operations is to identify and track meaningful, quantifiable measures that reflect progress toward the goals of the plan. The Iowa Department of Transportation (DOT) has already adopted performance measures in a number of operational areas, including highway maintenance, highway safety, public transportation, and aeronautics. This report is an initial effort to utilize performance measures for transportation system planning. The selected measures provide a cross-section of system performance indicators across three selected transportation planning goals (safety, efficiency, and quality of life) and five transportation modes (highways/bridges, public transit, railroads, aviation, and pedestrian/bicycle). These performance measures are exploratory in nature, and constitute a first attempt to apply performance measures in the context of a statewide, multimodal transportation plan from the Iowa DOT. As such, the set of performance measures that the Iowa DOT uses for planning will change over time as more is learned about the application of such measures. The performance measures explained in this document were developed through consultation with Iowa DOT modal staff (aviation, railroads, highways, public transportation, and pedestrian/bicycle) and the Office of Traffic and Safety. In addition, faculty and staff at the Iowa State University Center for Transportation Research and Education were consulted about performance measurement and data within their areas of expertise.
Resumo:
Bridge construction projects are becoming increasingly complex as the demand for context-sensitive solutions, aesthetic designs, and accelerated bridge construction becomes more prevalent. In addition, the Iowa Department of Transportation (Iowa DOT) is entering a phase of design and construction of large border bridges, such as the I-80 (let 2008 for $56 million) and US 34 bridges over the Missouri River and I-74 over the Mississippi River. Compared to typical construction projects, these bridges generate more contractor Requests for Information (RFIs), Value Engineering (VE) proposals, Requests for Changes (RFCs), and shop drawings. Management of these submittals is a significant challenge for Resident Construction Engineers (RCEs) and other Iowa DOT staff. In addition, some submittals require cross-departmental and project consultant reviews. Commercially available software exists for managing submittals and project collaboration teams; in-house solutions may also be possible. Implementation is intended to speed construction submittal review time, reduce incidence of delay claims, and free up Iowa DOT staff from project management administrative tasks. Researchers from Iowa State University working with the Iowa DOT conducted a multi-pronged approach to indentify a web-based collaboration solution for Iowa DOT bridge projects. An investigation was launched to determine the functional needs of the Iowa DOT. Commercially available software programs were also evaluated to find what functionality is currently available. A Request for Proposals (RFP) was written to select a commercial web-based collaboration solution for pilot testing. In the second phase of research, a solution will be selected and implemented on two pilot projects. Lessons learned from these pilot projects will assist the Iowa DOT in developing and implementing a long-term solution to improve the management of Iowa DOT bridge projects.
Resumo:
The Iowa Department of Transportation (IaDOT) was interested in investigating the use of epoxy adhesive anchorages for the attachment of posts used in the BR27C combination bridge rail system. Alternative anchorage concepts were developed using a modified version of the ACI 318-11 procedures for embedded anchor design. Four design concepts were developed for review by IaDOT, including: (1) a four-bolt square anchorage, (2) a four-bolt spread anchorage, (3) a twobolt centered anchorage, and (4) a two-bolt offset anchorage. IaDOT representatives selected the four-bolt spread anchorage and the two-bolt offset anchorage as the preferred designs for evaluation. In addition to these two proposed configurations, IaDOT also requested that the researchers evaluate a third option that had been previously installed on the US-20 bridge near Hardin, IA. The proposed alternative anchorages and the original cast-in-place anchorage for the BR27C combination bridge rail were evaluated through dynamic component testing. The test of the original cast-in-place anchorage was used a baseline for comparison with the alternative designs. Test no. IBP-1 of the original cast-in-place anchorage developed a peak load of 22.9 kips (101.9 kN) at a deflection of 1.5 in. (38 mm). All three of the tested alternative anchorages provided greater load capacity than the original cast-in-place design and were deemed acceptable surrogates. Of the three alternative designs, the two-bolt offset design was deemed the best option.
Resumo:
The corrosion of steel reinforcement in an aging highway infrastructure is a major problem currently facing the transportation engineering community. In the United States alone, maintenance and replacement costs for deficient bridges are measured in billions of dollars. The application of corrosion-resistant steel reinforcement as an alternative reinforcement to existing mild steel reinforced concrete bridge decks has potential to mitigate corrosion problems, due to the fundamental properties associated with the materials. To investigate corrosion prevention through the use of corrosion-resistant alloys, the performance of corrosion resistance of MMFX microcomposite steel reinforcement, a high-strength, high-chromium steel reinforcement, was evaluated. The study consisted of both field and laboratory components conducted at the Iowa State University Bridge Engineering Center to determine whether MMFX reinforcement provides superior corrosion resistance to epoxy-coated mild steel reinforcement in bridge decks. Because definitive field evidence of the corrosion resistance of MMFX reinforcement may require several years of monitoring, strict attention was given to investigating reinforcement under accelerated conditions in the laboratory, based on typical ASTM and Rapid Macrocell accelerated corrosion tests. After 40 weeks of laboratory testing, the ASTM ACT corrosion potentials indicate that corrosion had not initiated for either MMFX or the as-delivered epoxy-coated reinforcement. Conversely, uncoated mild steel specimens underwent corrosion within the fifth week, while epoxy-coated reinforcement specimens with induced holidays underwent corrosion between 15 and 30 weeks. Within the fifth week of testing, the Rapid Macrocell ACT produced corrosion risk potentials that indicate active corrosion for all reinforcement types tested. While the limited results from the 40 weeks of laboratory testing may not constitute a prediction of life expectancy and life-cycle cost, a procedure is presented herein to determine life expectancy and associated life-cycle costs.
Resumo:
Many state, county, and local agencies are faced with deteriorating bridge infrastructure composed of a large percentage of relatively short to medium span bridges. In many cases, these older structures are rolled or welded longitudinal steel stringers acting compositely with a reinforced concrete deck. Most of these bridges, although still in service, need some level of strengthening due to increases in legal live loads or loss of capacity due to deterioration. Although these bridges are overstressed in most instances, they do not warrant replacement; thus, structurally efficient but cost-effective means of strengthening needs to be employed. In the past, the use of bolted steel cover plates or angles was a common retrofit option for strengthening such bridges. However, the time and labor involved to attach such a strengthening system can sometimes be prohibitive. This project was funded through the Federal Highway Administration’s Innovative Bridge Research and Construction program. The goal is to retrofit an existing structurally deficient, three-span continuous steel stringer bridge using an innovative technique that involves the application of post-tensioning forces; the post-tensioning forces were applied using fiber reinforced polymer post-tensioning bars. When compared to other strengthening methods, the use of carbon fiber reinforced polymer composite materials is very appealing in that they are highly resistant to corrosion, have a low weight, and have a high tensile strength. Before the post-tensioning system was installed, a diagnostic load test was conducted on the subject bridge to establish a baseline behavior of the unstrengthened bridge. During the process of installing the post-tensioning hardware and stressing the system, both the bridge and the post-tensioning system were monitored. The installation of the hardware was followed by a follow-up diagnostic load test to assess the effectiveness of the post-tensioning strengthening system. Additional load tests were performed over a period of two years to identify any changes in the strengthening system with time. Laboratory testing of several typical carbon fiber reinforced polymer bar specimens was also conducted to more thoroughly understand their behavior. This report documents the design, installation, and field testing of the strengthening system and bridge.
Resumo:
Of the approximately 25,000 bridges in Iowa, 28% are classified as structurally deficient, functionally obsolete, or both. The state of Iowa thus follows the national trend of an aging infrastructure in dire need of repair or replacement with a relatively limited funding base. Therefore, there is a need to develop new materials with properties that may lead to longer life spans and reduced life-cycle costs. In addition, new methods for determining the condition of structures are needed to monitor the structures effectively and identify when the useful life of the structure has expired or other maintenance is needed. High-performance steel (HPS) has emerged as a material with enhanced weldability, weathering capabilities, and fracture toughness compared to conventional structural steels. In 2004, the Iowa Department of Transportation opened Iowa's first HPS girder bridge, the East 12th Street Bridge over I-235 in Des Moines, Iowa. The objective of this project was to evaluate HPS as a viable option for use in Iowa bridges with a continuous structural health monitoring (SHM) system. The scope of the project included documenting the construction of the East 12th Street Bridge and concurrently developing a remote, continuous SHM system using fiber-optic sensing technology to evaluate the structural performance of the bridge. The SHM system included bridge evaluation parameters, similar to design parameters used by bridge engineers, for evaluating the structure. Through the successful completion of this project, a baseline of bridge performance was established that can be used for continued long-term monitoring of the structure. In general, the structural performance of the HPS bridge exceeded the design parameters and is performing well. Although some problems were encountered with the SHM system, the system functions well and recommendations for improving the system have been made.
Resumo:
General equations are presented for predicting loss of prestress and camber of both composite and non- composite prestressed concrete structures. Continuous time functins of all parameters needed to solve the equations are given, and sample results included. Computed prestress loss and camber are compared with experimental data for normal weight and lightweight concrete. Methods are also presented for predicting the effect of non-prestressed tension steel in reducing time-dependent loss of prestress and camber, and for the determination of short-time deflections of uncracked and cracked prestressed members. Comparisons with experimental results are indicated for these partially prestressed methods.
Resumo:
This report contains an estimate of the cost of highway resurfacing necessitated by damage from studded tires. The total is $95,620,000 for the twenty-five years from 1971 to 1996. This total includes $51,937,000 to resurface pavements and bridges on Interstate routes and $43,683,000 for other Primary highways. The estimate for Interstate routes includes those sections now open to traffic and those planned for completion by November 1974. The estimate for other Primary routes includes rural and municipal sections open to traffic as of November 1970. The estimate was prepared by computing the cost of expected pavement and bridge resurfacing costs for the twenty-five year period assuming continued use of studded tires, then subtracting from this the expected resurfacing ) cost for the same period assuming that the use of' studded tires is prohibited. The total figure, $95,620,000, should be regarded as a conservative estimate of the cost which may be avoided by prohibiting the use of studded tires in Iowa. The conservative nature of the estimate may be demonstrated by the following examples of the guidelines used iri its preparation. 1. Only mainline pavements were included in the cost estimate for the Interstate routes. The connecting loops, exit ramps and entrance ramps at Interstate interchanges contain many additional miles of pavement subject to wear by studded tires. This pavement was omitted from the estimate because reliable ' information about the rate of pavement wear at such locations is not available. As a result, the Interstate resurfacing costs are underestimated. 2. Several other costs were also omitted from the estimate because of a lack of sufficient information. These include the cost of repairing damage caused by studded tires to city streets other than those designated as Primary routes, the damage to pavements and bridges on the more-heavily travelled Secondary roads, and the damage to pavement traffic markings on all highway systems. Experience indicates that portland cement concrete pavements in Iowa have a normal service life of twenty-five years before resurfacing becomes necessary. The service life for asphalt pavements is thirteen years. In making this cost estimate, the need for resurfacing was attributed to wear from studded tires only when the normal service life of the pavement was shortened by that wear. Consequently, this cost estimate does not account for the reduced safety and convenience to Iowa motorists during the time when pavement wear caused by studded tires is significant but less than the critical amount.
Resumo:
La excavación de las necrópolis de incineración de Santa Madrona (Riba-roja d’Ebre) y Sebes (Flix) aportan nuevos datos sobre el estudio del mundo funerario en esta zona. Ambas presentan una fase de utilización durante la Primera Edad del Hierro (siglos vii-vi a.C.), caracterizada por un predominio de estructuras tumulares, junto a las que se documentan otras variantes (urnas funerarias sin túmulo, deposiciones de huesos sin urna, ofrendas funerarias, estructuras empedradas sin urna, etc.). En ambas necrópolis, los estudios antropológicos muestran que todos los grupos de edad estaban representados. Los materiales cerámicos y ajuares presentan gran similitud entre las diferentes sepulturas, lo que sugiere una cierta igualdad en el tratamiento de los difuntos. La existencia, en ambos casos, de dos áreas diferenciadas, podría indicar una separación en función de grupos familiares.
Resumo:
Information concerning standard design practices and details for the Iowa Department of Transportation (IDOT) was provided to the research team. This was reviewed in detail so that the researchers would be familiar with the terminology and standard construction details. A comprehensive literature review was completed to gather information concerning constructability concepts applicable to bridges. It was determined that most of the literature deals with constructability as a general topic with only a limited amount of literature with specific concepts for bridge design and construction. Literature was also examined concerning the development of appropriate microcomputer databases. These activities represent completion of Task 1 as identified in the study.
Resumo:
Integral abutment bridges are constructed without an expansion joint in the superstructure of the bridge; therefore, the bridge girders, deck, abutment diaphragms, and abutments are monolithically constructed. The abutment piles in an integral abutment bridge are vertically orientated, and they are embedded into the pile cap. When this type of a bridge experiences thermal expansion or contraction, horizontal displacements are induced at the top of the abutment piles. The flexibility of the abutment piles eliminates the need to provide an expansion joint at the inside face to the abutments: Integral abutment bridge construction has been used in Iowa and other states for many years. This research is evaluating the performance of integral abutment bridges by investigating thermally induced displacements, strains, and temperatures in two Iowa bridges. Each bridge has a skewed alignment, contains five prestressed concrete girders that support a 30-ft wide roadway for three spans, and involves a water crossing. The bridges will be monitored for about two years. For each bridge, an instrumentation package includes measurement devices and hardware and software support systems. The measurement devices are displacement transducers, strain gages, and thermocouples. The hardware and software systems include a data-logger; multiplexers; directline telephone service and computer terminal modem; direct-line electrical power; lap-top computer; and an assortment of computer programs for monitoring, transmitting, and management of the data. Instrumentation has been installed on a bridge located in Guthrie County, and similar instrumentation is currently being installed on a bridge located in Story County. Preliminary test results for the bridge located in Guthrie County have revealed that temperature changes of the bridge deck and girders induce both longitudinal and transverse displacements of the abutments and significant flexural strains in the abutment piles. For an average temperature range of 73° F for the superstructure concrete in the bridge located in Guthrie County, the change in the bridge length was about 1 118 in. and the maximum, strong-axis, flexural-strain range for one of the abutment piles was about 400 micro-strains, which corresponds to a stress range of about 11,600 psi.
Resumo:
It is the objective of this project to determine, via field tests, the long term effectiveness of several available systems as their ability to protect concrete surfaces against the intrusion of chloride ions. Early concepts of this project included utilizing personnel from several offices within the Highway Division of the Iowa Department of Transportation. Cooperation and coordination with regularly scheduled activities were considered imperative. A meeting for this purpose was held on April 16, 1980. This meeting was attended by the investigators, Mr. Bernard C. Brown, Office of Materials, Mr. Richard Merritt, District 6 Materials Engineer, Mr. John Saunders, District 6 Maintenance Engineer, and Mr. James Phinney, Resident Maintenance Engineer.
Resumo:
Bridge expansion joints, if not properly designed, constructed, and maintained, often lead to the deterioration of critical substructure elements. Strip seal expansion joints consisting of a steel extrusion and neoprene gland are one type of expansion joint and are commonly used by the Iowa Department of Transportation (DOT). Strip seal expansion joints are susceptible to tears and pull outs that allow water, chlorides, and debris to infiltrate the joint, and subsequently the bearings below. One area of the strip seal that is particularly problematic is where it terminates at the interface between the deck and the barrier rail. The Iowa DOT has noted that the initial construction quality of the current strip seal termination detail is not satisfactory, nor ideal, and a need exists for re-evaluation and possibly re-design of this detail. Desirable qualities of a strip seal termination detail provide a seal that is simple and fast to construct, facilitate quick gland removal and installation, and provide a reliable, durable barrier to prevent chloride-contaminated water from reaching the substructure. To meet the objectives of this research project, several strip seal termination details were evaluated in the laboratory. Alternate termination details may not only function better than the current Iowa DOT standard, but are also less complicated to construct, facilitating better quality control. However, uncertainties still exist regarding the long-term effects of using straight-through details, with or without the dogleg, that could not be answered in the laboratory in the short time frame of the research project.
Resumo:
Joint Publications from Iowa Engineering Experiment Station - Bulletin No. 188 and Iowa Highway Research Board - Bulletin No. 17. In the design of highway bridges, the 'static live load is multiplied by a factor to compensate for the dynamic effect of moving vehicles. This factor, commonly referred to as an impact factor, is intended to provide for the dynamic response of the bridge to moving loads and suddenly applied forces. Many investigators have published research which contradicts the current impact formula 1,4,17. Some investigators feel that the problem of impact deals not only with the increase in over-all static live load but that it is an integral part of a dynamic load distribution problem. The current expanded highway program with the large number of bridge structures required emphasizes the need for investigating some of the dynamic behavior problems which have been generally ignored by highway engineers. These problems generally result from the inability of a designer to predict the dynamic response of a bridge structure. Many different investigations have been made of particular portions of the overall dynamic problem. The results of these varied investigations are inevitably followed by a number of unanswered questions. Ironically, many of the unanswered questions are those which are of immediate concern in the design of highway bridges, and this emphasizes the need for additional research on the problem of impact.