938 resultados para Tubular polymerization reactor
Resumo:
We describe and analyze the efficiency of a new solar-thermochemical reactor concept, which employs a moving packed bed of reactive particles produce of H-2 or CO from solar energy and H2O or CO2. The packed bed reactor incorporates several features essential to achieving high efficiency: spatial separation of pressures, temperature, and reaction products in the reactor; solid-solid sensible heat recovery between reaction steps; continuous on-sun operation; and direct solar illumination of the working material. Our efficiency analysis includes material thermodynamics and a detailed accounting of energy losses, and demonstrates that vacuum pumping, made possible by the innovative pressure separation approach in our reactor, has a decisive efficiency advantage over inert gas sweeping. We show that in a fully developed system, using CeO2 as a reactive material, the conversion efficiency of solar energy into H-2 and CO at the design point can exceed 30%. The reactor operational flexibility makes it suitable for a wide range of operating conditions, allowing for high efficiency on an annual average basis. The mixture of H-2 and CO, known as synthesis gas, is not only usable as a fuel but is also a universal starting point for the production of synthetic fuels compatible with the existing energy infrastructure. This would make it possible to replace petroleum derivatives used in transportation in the U. S., by using less than 0.7% of the U. S. land area, a roughly two orders of magnitude improvement over mature biofuel approaches. In addition, the packed bed reactor design is flexible and can be adapted to new, better performing reactive materials.
Resumo:
Tenofovir disoproxil fumarate (TDF) has been associated with proximal renal tubulopathy and reduction in estimated glomerular filtration rate (eGFR), without accounting for the tubular secretion of creatinine.
Resumo:
The management of inherited hypokalemia has improved and the issue of pregnancy has become important.
Resumo:
The atom transfer radical polymerization (ATRP) of styrene (St) was conducted in the presence of varying equivalence (eq) of hexafluorobenzene (HFB) and octafluorotoluene (OFT) to probe the effects of pi-pi stacking on the rate of the polymerization and on the tacticity of the resulting polystyrene (PSt). The extent of the pi-pi stacking interaction between HFB/OFT and the terminal polystyrenic phenyl group was also investigated as a function of solvent, both non-aromatic solvents (THF and hexanes) and aromatic solvents (benzene and toluene). In all cases the presence of HFB or OFT resulted in a decrease in monomer conversion indicating a reduction in the rate of the polymerization with greater retardation of the rate with increase eq of HFB or OFT (0.5 eq to 1 eq HFB/OFT compared to St). Additionally, when aromatic solvents were used instead of non-aromatic solvents the effect of the HFB/OFT on the rate was minimized, consistent with the aromatic solvent competitively interacting with the HFB/OFT. The effects of temperature and ligand strength on the ATRP of St in the presence of HFB were also probed. It was found that when using N,N,N’,N’,N’’-pentamethyldiethylenetriamine (PMDETA) as the ligand the effects of HFB at 38o were the same as at 86oC. When tris[2-(dimethylamino)ethyl]-amine (Me6TREN) was used as the ligand at 38o there was a decrease in monomer conversion similar to the analogous PMDETA reaction. When the polymerization was conducted at 86oC there was no effect on the monomer conversion with HFB present compared to when HFB was absent. To investigate the pi-pi stacking effect even further, the reverse pi-pi stacking system was observed by conducting the ATRP of pentafluorostyrene (PFSt) in the presence of varying eq of benzene and toluene, which in both cases resulted in an increase in monomer conversion compared to when benzene or toluene were absent; in summary the rate of the ATRP of PFSt increases when benzene or toluene waas present in the reaction. The pi-pi stacking interaction between the HFB/OFT and the dormant alkyl bromide of the polymer chain was verified by 1H-NMR with 1-bromoethylbenzene as the alkyl bromide. Also verified by 1H-NMR was the interaction between HFB/OFT and St and the interaction between PFSt and benzene. In all 1H-NMR spectra a perturbation in the aromatic and/or vinyl peaks was observed when the pi-pi stacking agent was present compared to when it was absent. The tacticity of the PSt formed in the presence of 1 eq of HFB was compared to the PSt formed in the absence of HFB by observing the C1 signal in their 13C-NMR spectra, but no change in shape or chemical shift of the signal was observed indicating that there was no change in tacticity.
Polymerization of Styrene and Cyclization to Macrocyclic Polystyrene in a One-Pot, Two-Step Sequence
Resumo:
Dibrominated polystyrene (BrPStBr) was produced by atom transfer radical polymerization (ATRP) at 80 degrees C, using the bifunctional initiator benzal bromide to afford the telechelic precursor. The ATRP reaction was stopped around 40% monomer conversion and directly converted into an radical trap-assisted atom transfer radical coupling (RTA-ATRC) reaction by lowering the temperature to 50 degrees C, and adding the radical trap 2-methyl-2-nitrosopropane (MNP) along with additional catalyst, reducing agent, and ligand to match ATRC-type reaction conditions. In an attempt to induce intramolecular coupling, rather than solely intermolecular coupling and elongation, the total reaction volume was increased by the addition of varying amounts of THF. Cyclization, along with intermolecular coupling and elongation, occurred in all cases, with the extent of ring closure a function of the total reaction volume. The cyclic portion of the coupled product was found to have a (G) value around 0.8 by GPC analysis, consistent with the reduction in hydrodynamic volume of a cyclic polymer compared to its linear analog. Analysis of the sequence by H-1 NMR confirmed that propagation was suppressed nearly completely during the RTA-ATRC phase, with percent monomer conversion remaining constant after the ATRP phase. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
PURPOSE: Limited information is available concerning changes in the urodynamic characteristics of orthotopic bladder substitutes with time. Therefore, we compared early and late urodynamic results in patients with an ileal orthotopic bladder substitute combined with an afferent tubular segment. MATERIALS AND METHODS: Of 139 patients surviving at least 5 years after cystoprostatectomy and ileal orthotopic bladder substitution with an afferent tubular segment 119 underwent urodynamic assessment, including 66 at a median of 9 months (early) and 77 at a median of 62 months (late). Of these patients 24 were assessed at each time point. Simultaneously all patients were asked to complete a bladder diary and questionnaire regarding continence for at least 3 days in the week preceding the urodynamic study. RESULTS: Urodynamic parameters were comparable in patients who were evaluated early and late postoperatively. In addition, median values at early and late urodynamic evaluation in the 24 patients with the 2 examinations showed no statistically significant differences for volume at first desire to void (300 vs 333 ml, p = 0.85), pressure at first desire to void (12 vs 13 cm H2O, p = 0.57), maximum cystometric capacity (450 vs 453 ml, p = 0.84), end filling pressure (19 vs 20 cm H2O, p = 0.17), reservoir compliance (25 vs 28 ml/cm H2O, p = 0.58) or post-void residual urine volume (5 vs 15 ml, p = 0.27). CONCLUSIONS: Urodynamic results after 5 years of living with an ileal orthotopic bladder substitute with an afferent tubular segment show grossly unchanged urodynamic characteristics. Patients maintain a reservoir capacity and micturition pattern consistent with a normal life-style. Reservoir pressure remained low, thereby protecting and preserving upper tract function. To achieve these results patients must be regularly followed, and the causes of bacteriuria, increased post-void residual urine and bladder outlet obstruction must be recognized and dealt with accordingly.
Resumo:
To evaluate tenofovir-related nephropathy, we quantified calculated glomerular filtration rates (GFR) and renal tubular function in 46 tenofovir-treated patients and 25 without tenofovir. We also analysed patients who stopped tenofovir for drug-related nephrotoxicity at our clinic. Tenofovir use combined with non-nucleoside reverse transcriptase inhibitors, but not with protease inhibitors, resulted in a significant increase in calculated GFR. Tenofovir use was associated with significantly lower phosphatemia and a marginally increased fractional excretion of uric acid, but no other signs of tubulopathy.
Resumo:
Although the diagnosis of Gitelman syndrome (GS) and Bartter syndrome (BS) is now feasible by genetic analysis, implementation of genetic testing for these disorders is still hampered by several difficulties, including large gene dimensions, lack of hot-spot mutations, heavy workup time, and costs. This study evaluated in a cohort of patients with genetically proven GS or BS diagnostic sensibility and specificity of a diuretic test with oral hydrochlorothiazide (HCT test). Forty-one patients with GS (22 adults, aged 25 to 57; 19 children-adolescents, aged 7 to 17) and seven patients with BS (five type I, two type III) were studied; three patients with "pseudo-BS" from surreptitious diuretic intake (two patients) or vomiting (one patient) were also included. HCT test consisted of the administration of 50 mg of HCT orally (1 mg/kg in children-adolescents) and measurement of the maximal diuretic-induced increase over basal in the subsequent 3 h of chloride fractional clearance. All but three patients with GS but no patients with BS and pseudo-BS showed blunted (<2.3%) response to HCT; patients with BS and the two patients with pseudo-BS from diuretic intake had increased response to HCT. No overlap existed between patients with GS and both patients with BS and pseudo-BS. The response to HCT test is blunted in patients with GS but not in patients with BS or nongenetic hypokalemia. In patients with the highly selected phenotype of normotensive hypokalemic alkalosis, abnormal HCT test allows prediction with a very high sensitivity and specificity of the Gitelman genotype and may avoid genotyping.
Resumo:
Steel tubular cast-in-place pilings are used throughout the country for many different project types. These piles are a closed-end pipe with varying wall thicknesses and outer diameters, that are driven to depth and then the core is filled with concrete. These piles are typically used for smaller bridges, or secondary structures. Mostly the piling is designed based on a resistance based method which is a function of the soil properties of which the pile is driven through, however there is a structural capacity of these members that is considered to be the upper bound on the loading of the member. This structural capacity is given by the AASHTO LRFD (2010), with two methods. These two methods are based on a composite or non-composite section. Many state agencies and corporations use the non-composite equation because it is requires much less computation and is known to be conservative. However with the trends of the time, more and more structural elements are being investigated to determine ways to better understand the mechanics of the members, which could lead to more efficient and safer designs. In this project, a set of these piling are investigated. The way the cross section reacts to several different loading conditions, along with a more detailed observation of the material properties is considered as part of this research. The evaluation consisted of testing stub sections of pile with varying sizes (10-¾”, 12-¾”), wall thicknesses (0.375”, 0.5”), and testing methods (whole compression, composite compression, push through, core sampling). These stub sections were chosen as they would represent a similar bracing length to many different soils. In addition, a finite element model was developed using ANSYS to predict the strains from the testing of the pile cross sections. This model was able to simulate the strains from most of the loading conditions and sizes that were tested. The bond between the steel shell and the concrete core, along with the concrete strength through the depth of the cross section were some of the material properties of these sections that were investigated.
Resumo:
For human beings, the origin of life has always been an interesting and mysterious matter, particularly how life arose from inorganic matter through natural processes. Polymerization is always involved in such processes. In this paper we built what we refer to as ideal and physical models to simulate spontaneous polymerization based on certain physical principles. As the modeling confirms, without taking external energy, small and simple inorganic molecules formed bigger and more complicated molecules, which are necessary ingredients of all living organisms. In our simulations, we utilized actual ranges of parameters according to their experimentally observed values. The results from the simulations led to a good agreement with the nature of polymerization. After sorting out through all the models that were built, we arrived at a final model that, it is hoped, can be used to simply and efficiently describe spontaneous polymerization using only three parameters: the dipole moment, the distance between molecules, and the temperature.
Resumo:
The selective catalytic reduction system is a well established technology for NOx emissions control in diesel engines. A one dimensional, single channel selective catalytic reduction (SCR) model was previously developed using Oak Ridge National Laboratory (ORNL) generated reactor data for an iron-zeolite catalyst system. Calibration of this model to fit the experimental reactor data collected at ORNL for a copper-zeolite SCR catalyst is presented. Initially a test protocol was developed in order to investigate the different phenomena responsible for the SCR system response. A SCR model with two distinct types of storage sites was used. The calibration process was started with storage capacity calculations for the catalyst sample. Then the chemical kinetics occurring at each segment of the protocol was investigated. The reactions included in this model were adsorption, desorption, standard SCR, fast SCR, slow SCR, NH3 Oxidation, NO oxidation and N2O formation. The reaction rates were identified for each temperature using a time domain optimization approach. Assuming an Arrhenius form of the reaction rates, activation energies and pre-exponential parameters were fit to the reaction rates. The results indicate that the Arrhenius form is appropriate and the reaction scheme used allows the model to fit to the experimental data and also for use in real world engine studies.
Resumo:
Mutations in the B1 subunit of the multisubunit vacuolar ATPase cause autosomal-recessive distal renal tubular acidosis and sensorineural deafness. Here, we report a novel frameshift mutation that truncates the C-terminus of the human B1 subunit. This mutant protein failed to assemble with other subunits in the cytosol to form the complex that can be targeted to vesicular structures in mammalian cells. Loss of proton pump activity was demonstrated in a functional complementation assay in B-subunit null yeast. The mutation caused loss of a discreet C-terminal region critical for subunit interaction not related to the C-terminal PDZ motif. Co-expression studies failed to demonstrate dominant negative effects of this truncated mutant over wild-type B1. Analysis of 12 reported B1 subunit missense mutations showed one polymorphic allele had intact pump function, two point mutants had intact assembly but defective proton pumping, and the remaining nine had disrupted assembly with no pump function. One presumed polymorphic allele was actually an inactivating mutation. Our study shows that multiple mechanisms of pump dysfunction result from B1 subunit mutations with a common outcome being defective assembly. Polymorphisms of the B1 subunit in the general population may affect renal acidification and urinary chemistry.