973 resultados para Tuberculosis vaccines.
Resumo:
Protective immunity to Mycobacterium tuberculosis (Mtb) is commonly ascribed to a Th1 profile; however, the involvement of Th17 cells remains to be clarified. Here, we characterized Mtb-specific CD4(+) T cells in blood and bronchoalveolar lavages (BALs) from untreated subjects with either active tuberculosis disease (TB) or latent Mtb infection (LTBI), considered as prototypic models of uncontrolled or controlled infection, respectively. The production of IL-17A, IFN-γ, TNF-α, and IL-2 by Mtb-specific CD4(+) T cells was assessed both directly ex vivo and following in vitro antigen-specific T-cell expansion. Unlike for extracellular bacteria, Mtb-specific CD4(+) T-cell responses lacked immediate ex vivo IL-17A effector function in both LTBI and TB individuals. Furthermore, Mtb-specific Th17 cells were absent in BALs, while extracellular bacteria-specific Th17 cells were identified in gut biopsies of healthy individuals. Interestingly, only Mtb-specific CD4(+) T cells from 50% of LTBI but not from TB subjects acquired the ability to produce IL-17A following Mtb-specific T-cell expansion. Finally, IL-17A acquisition by Mtb-specific CD4(+) T cells correlated with the coexpression of CXCR3 and CCR6, currently associated to Th1 or Th17 profiles, respectively. Our data demonstrate that Mtb-specific Th17 cells are selectively undetectable in peripheral blood and BALs from TB patients.
Resumo:
BACKGROUND: Antitumour necrosis factor (anti-TNF) treatments may reactivate latent tuberculosis infection (LTBI). For detecting LTBI, the tuberculin skin test (TST) has low sensitivity and specificity. Interferon-gamma release assays (IGRA) have been shown to be more sensitive and specific than TST. OBJECTIVE: To compare the TST and the T-SPOT.TB IGRA for identifying LTBI in patients with psoriasis before anti-TNF treatment. METHODS: A retrospective study was carried out over a 4-year period on patients with psoriasis requiring anti-TNF treatment. All were subjected to the TST, T-SPOT.TB and chest X-ray. Risk factors for LTBI and history of bacillus Calmette-Guérin (BCG) vaccination were recorded. The association of T-SPOT.TB and TST results with risk factors for LTBI was tested through univariate logistic regression models. Agreement between tests was quantified using kappa statistics. Treatment for LTBI was started 1 month before anti-TNF therapy when indicated. RESULTS: Fifty patients were included; 90% had prior BCG vaccination. A positive T-SPOT.TB was strongly associated with a presumptive diagnosis of LTBI (odds ratio 7.43; 95% confidence interval 1.38-39.9), which was not the case for the TST. Agreement between the T-SPOT.TB and TST was poor, kappa = 0.33 (SD 0.13). LTBI was detected and treated in 20% of the patients. In 20% of the cases, LTBI was not retained in spite of a positive TST but a negative T-SPOT.TB. All patients received an anti-TNF agent for a median of 56 weeks (range 20-188); among patients with a positive TST/negative T-SPOT.TB, no tuberculosis was detected with a median follow-up of 64 weeks (44-188). One case of disseminated tuberculosis occurred after 28 weeks of adalimumab treatment in a patient with LTBI in spite of treatment with rifampicin. CONCLUSION: This study is the first to underline the frequency of LTBI in patients with psoriasis (20%), and to support the use of IGRA instead of the TST for its detection. Nevertheless, there is still a risk of tuberculosis under anti-TNF therapy, even if LTBI is correctly diagnosed and treated.
Resumo:
Background: Despite the widespread use of interferon-gamma release assays (IGRAs), their role in diagnosing tuberculosis and targeting preventive therapy in HIV-infected patients remains unclear. We conducted a comprehensive systematic review to contribute to the evidence-based practice in HIV-infected people. Methodology/Principal Findings: We searched MEDLINE, Cochrane, and Biomedicine databases to identify articles published between January 2005 and July 2011 that assessed QuantiFERON H -TB Gold In-Tube (QFT-GIT) and T-SPOT H .TB (T-SPOT.TB) in HIV-infected adults. We assessed their accuracy for the diagnosis of tuberculosis and incident active tuberculosis, and the proportion of indeterminate results. The search identified 38 evaluable studies covering a total of 6514 HIV-infected participants. The pooled sensitivity and specificity for tuberculosis were 61% and 72% for QFT-GIT, and 65% and 70% for T-SPOT.TB. The cumulative incidence of subsequent active tuberculosis was 8.3% for QFT-GIT and 10% for T-SPOT.TB in patients tested positive (one study each), and 0% for QFT-GIT (two studies) and T-SPOT.TB (one study) respectively in those tested negative. Pooled indeterminate rates were 8.2% for QFT-GIT and 5.9% for T-SPOT.TB. Rates were higher in high burden settings (12.0% for QFT-GIT and 7.7% for T-SPOT.TB) than in low-intermediate burden settings (3.9% for QFT-GIT and 4.3% for T-SPOT.TB). They were also higher in patients with CD4 + T-cell count, 200 (11.6% for QFT-GIT and 11.4% for T-SPOT.TB) than in those with CD4 + T-cell count $ 200 (3.1% for QFT-GIT and 7.9% for T-SPOT.TB). Conclusions/Significance: IGRAs have suboptimal accuracy for confirming or ruling out active tuberculosis disease in HIV-infected adults. While their predictive value for incident active tuberculosis is modest, a negative QFT-GIT implies a very low short- to medium-term risk. Identifying the factors associated with indeterminate results will help to optimize the use of IGRAs in clinical practice, particularly in resource-limited countries with a high prevalence of HIV-coinfection.
Resumo:
Interferon-γ-based assays, collectively known as IFN-γ release assays (IGRAs), have emerged as a reliable alternative to the old tuberculin skin test (TST) for the immunodiagnosis of tuberculosis (TB) infection. The 2 commercially available tests, the enzyme-linked immunosorbent assay (ELISA), QuantiFERON-TB Gold Intube (QFT-IT), and the enzyme-linked immunospot assay (ELISPOT), T-SPOT.TB, are more accurate than TST for the diagnosis of TB, since they are highly specific and correlate better with the existence of risk factors for the infection. According to the available data, T-SPOT.TB obtains a higher number of positive results than QFT-IT, while its specificity seems to be lower. Although the sensitivity of the IFN-γ -based assays may be impaired to some extent by cellular immunosuppression and extreme ages of life, they perform better than TST in these situations. Data from longitudinal studies suggest that IFN-γ-based tests are better predictors of subsequent development of active TB than TST; however this prognostic value has not been consistently demonstrated. This review focuses on the clinical use of the IFN-γ -based tests in different risk TB groups, and notes the main limitations and areas for future development.
Resumo:
The Bureau of Immunization is part of the Division of Acute Disease Prevention and Emergency Response (ADPER) at the Iowa Department of Public Health (IDPH). The ADPER division provides support, technical assistance and consultation to local hospitals, public health agencies, community health centers, emergency medical service programs and local health care providers regarding infectious diseases, disease prevention and control, injury prevention and public health and health care emergency preparedness and response. The division encompasses the Center for Acute Disease Epidemiology (CADE), the Bureau of Immunization and Tuberculosis (ITB), the Bureau of Emergency Medical Services (EMS), the Bureau of Communication and Planning (CAP), the Office of Health Information Technology (HIT), and the Center for Disaster Operations and Response (CDOR). The Bureau of Immunization and Tuberculosis includes the Immunization Program, the Tuberculosis Control Program, and the Refugee Health Program. The mission of the Immunization Program is to decrease vaccine‐preventable diseases through education, advocacy and partnership. While there has been major advancement in expanding immunizations to many parts of Iowa’s population, work must continue with public and private health care providers to promote the program’s vision of healthy Iowans living in communities free of vaccine‐preventable diseases. Accomplishing this goal will require achieving and maintaining high vaccination coverage levels, improving vaccination strategies among under‐vaccinated populations, prompt reporting and thorough investigation of suspected disease cases, and rapid institution of control measures. The Immunization Program is comprised of multiple programs that provide immunization services throughout the state: Adolescent Immunization Program, Adult Immunization Program, Immunization Registry Information System (IRIS), Vaccines for Children Program (VFC), Perinatal Hepatitis B Program, and Immunization Assessment Program.
Resumo:
The Bureau of Immunization is part of the Division of Acute Disease Prevention and Emergency Response (ADPER) at the Iowa Department of Public Health (IDPH). The ADPER division provides support, technical assistance and consultation to local hospitals, public health agencies, community health centers, emergency medical service programs and local health care providers regarding infectious diseases, disease prevention and control, injury prevention and public health and health care emergency preparedness and response. The division encompasses the Center for Acute Disease Epidemiology (CADE), the Bureau of Immunization and Tuberculosis (ITB), the Bureau of Emergency Medical Services (EMS), the Bureau of Communication and Planning (CAP), the Office of Health Information Technology (HIT), and the Center for Disaster Operations and Response (CDOR). The Bureau of Immunization and Tuberculosis includes the Immunization Program, the Tuberculosis Control Program, and the Refugee Health Program. The mission of the Immunization Program is to decrease vaccine‐preventable diseases through education, advocacy and partnership. While there has been major advancement in expanding immunizations to many parts of Iowa’s population, work must continue with public and private health care providers to promote the program’s vision of healthy Iowans living in communities free of vaccine‐preventable diseases. Accomplishing this goal will require achieving and maintaining high vaccination coverage levels, improving vaccination strategies among under‐vaccinated populations, prompt reporting and thorough investigation of suspected disease cases, and rapid institution of control measures. The Immunization Program is comprised of multiple programs that provide immunization services throughout the state: Adolescent Immunization Program, Adult Immunization Program, Immunization Registry Information System (IRIS), Vaccines for Children Program (VFC), Perinatal Hepatitis B Program, and Immunization Assessment Program.
Resumo:
The Bureau of Immunization is part of the Division of Acute Disease Prevention and Emergency Response (ADPER) at the Iowa Department of Public Health (IDPH). The ADPER division provides support, technical assistance and consultation to local hospitals, public health agencies, community health centers, emergency medical service programs and local health care providers regarding infectious diseases, disease prevention and control, injury prevention and public health and health care emergency preparedness and response. The division encompasses the Center for Acute Disease Epidemiology (CADE), the Bureau of Immunization and Tuberculosis (ITB), the Bureau of Emergency Medical Services (EMS), the Bureau of Communication and Planning (CAP), the Office of Health Information Technology (HIT), and the Center for Disaster Operations and Response (CDOR). The Bureau of Immunization and Tuberculosis includes the Immunization Program, the Tuberculosis Control Program, and the Refugee Health Program. The mission of the Immunization Program is to decrease vaccine‐preventable diseases through education, advocacy and partnership. While there has been major advancement in expanding immunizations to many parts of Iowa’s population, work must continue with public and private health care providers to promote the program’s vision of healthy Iowans living in communities free of vaccine‐preventable diseases. Accomplishing this goal will require achieving and maintaining high vaccination coverage levels, improving vaccination strategies among under‐vaccinated populations, prompt reporting and thorough investigation of suspected disease cases, and rapid institution of control measures. The Immunization Program is comprised of multiple programs that provide immunization services throughout the state: Adolescent Immunization Program, Adult Immunization Program, Immunization Registry Information System (IRIS), Vaccines for Children Program (VFC), Perinatal Hepatitis B Program, and Immunization Assessment Program.
Resumo:
The Bureau of Immunization is part of the Division of Acute Disease Prevention and Emergency Response (ADPER) at the Iowa Department of Public Health (IDPH). The ADPER division provides support, technical assistance and consultation to local hospitals, public health agencies, community health centers, emergency medical service programs and local health care providers regarding infectious diseases, disease prevention and control, injury prevention and public health and health care emergency preparedness and response. The division encompasses the Center for Acute Disease Epidemiology (CADE), the Bureau of Immunization and Tuberculosis (ITB), the Bureau of Emergency Medical Services (EMS), the Bureau of Communication and Planning (CAP), the Office of Health Information Technology (HIT), and the Center for Disaster Operations and Response (CDOR). The Bureau of Immunization and Tuberculosis includes the Immunization Program, the Tuberculosis Control Program, and the Refugee Health Program. The mission of the Immunization Program is to decrease vaccine‐preventable diseases through education, advocacy and partnership. While there has been major advancement in expanding immunizations to many parts of Iowa’s population, work must continue with public and private health care providers to promote the program’s vision of healthy Iowans living in communities free of vaccine‐preventable diseases. Accomplishing this goal will require achieving and maintaining high vaccination coverage levels, improving vaccination strategies among under‐vaccinated populations, prompt reporting and thorough investigation of suspected disease cases, and rapid institution of control measures. The Immunization Program is comprised of multiple programs that provide immunization services throughout the state: Adolescent Immunization Program, Adult Immunization Program, Immunization Registry Information System (IRIS), Vaccines for Children Program (VFC), Perinatal Hepatitis B Program, and Immunization Assessment Program.
Resumo:
PURPOSE: To evaluate the long-term outcome (up to 7 years) of presumed ocular tuberculosis (TB) when the therapeutic decision was based on WHO guidelines. METHODS: Twelve out of 654 new uveitic patients (1998-2004) presented with choroiditis and positive tuberculosis skin test (TST) (skin lesion diameter >15 mm). Therapy was administered according to WHO recommendations after ophthalmic and systemic investigation. The area size of ocular lesions at presentation and after therapy, measured on fluorescein and indocyanine green angiographies, was considered the primary outcome. Relapse of choroiditis was considered a secondary outcome. The T-SPOT TB test was performed when it became available. RESULTS: Visual acuity significantly improved after therapy (p=0.0357). The mean total surface of fluorescein lesions at entry was 44.8 ± 20.9 (arbitrary units) and decreased to 32.5 ± 16.9 after therapy (p=0.0165). The mean total surface of indocyanine green lesions at entry was 24.5 ± 13.3 and decreased to 10.8 ± 5.4 after therapy (p=0.0631). The T-SPOT TB revealed 2 false TST-positive results. The mean follow-up was 4.5 ± 1.5 years. Two relapses out of 10 confirmed ocular TB was observed after complete lesion healing, 2.5 years and 4.5 years after therapy, respectively. CONCLUSIONS: A decrease of ocular lesion mean size and a mean improvement of VA were observed after antituberculous therapy. Our long-term follow-up of chorioretinal lesions demonstrated relapse of ocular tuberculosis in 10% of patients with confirmed ocular TB, despite complete initial retinal scarring.
Resumo:
As part of a European initiative (EuroVacc), we report the design, construction, and immunogenicity of two HIV-1 vaccine candidates based on a clade C virus strain (CN54) representing the current major epidemic in Asia and parts of Africa. Open reading frames encoding an artificial 160-kDa GagPolNef (GPN) polyprotein and the external glycoprotein gp120 were fully RNA and codon optimized. A DNA vaccine (DNA-GPN and DNA-gp120, referred to as DNA-C), and a replication-deficient vaccinia virus encoding both reading frames (NYVAC-C), were assessed regarding immunogenicity in Balb/C mice. The intramuscular administration of both plasmid DNA constructs, followed by two booster DNA immunizations, induced substantial T-cell responses against both antigens as well as Env-specific antibodies. Whereas low doses of NYVAC-C failed to induce specific CTL or antibodies, high doses generated cellular as well as humoral immune responses, but these did not reach the levels seen following DNA vaccination. The most potent immune responses were detectable using prime:boost protocols, regardless of whether DNA-C or NYVAC-C was used as the priming or boosting agent. These preclinical findings revealed the immunogenic response triggered by DNA-C and its enhancement by combining it with NYVAC-C, thus complementing the macaque preclinical and human phase I clinical studies of EuroVacc.
Resumo:
The macrophage is the niche of the intracellular pathogen Mycobacterium tuberculosis. Induction of macrophage apoptosis by CD4(+) or CD8(+) T cells is accompanied by reduced bacterial counts, potentially defining a host defense mechanism. We have already established that M. tuberculosis-infected primary human macrophages have a reduced susceptibility to Fas ligand (FasL)-induced apoptosis. To study the mechanisms by which M. tuberculosis prevents apoptotic signaling, we have generated a cell culture system based on PMA- and IFN-gamma-differentiated THP-1 cells recapitulating the properties of primary macrophages. In these cells, nucleotide-binding oligomerization domain 2 or TLR2 agonists and mycobacterial infection protected macrophages from apoptosis and resulted in NF-kappaB nuclear translocation associated with up-regulation of the antiapoptotic cellular FLIP. Transduction of a receptor-interacting protein-2 dominant-negative construct showed that nucleotide-binding oligomerization domain 2 is not involved in protection in the mycobacterial infection system. In contrast, both a dominant-negative construct of the MyD88 adaptor and an NF-kappaB inhibitor abrogated the protection against FasL-mediated apoptosis, showing the implication of TLR2-mediated activation of NF-kappaB in apoptosis protection in infected macrophages. The apoptosis resistance of infected macrophages might be considered as an immune escape mechanism, whereby M. tuberculosis subverts innate immunity signaling to protect its host cell against FasL(+)-specific cytotoxic lymphocytes.
Resumo:
Tuberculosis incidence is low in Switzer land. We report here on a Swiss-born toddler. Tuberculosis manifested with a fever of unknown origin, mimicking an inflammatory or autoimmune disorder triggering a high dose of corticosteroid treatment. The disease went unrecognized for several weeks until development of a miliary tuberculosis with advanced central nervous system involvement. This case highlights the difficulties encountered in diagnosing tuberculosis and in identifying the origin of this case. It reminds us that this disease must never be forgotten when facing a child with persistent fever who must be screened for, before starting immunosuppressive therapy.
Resumo:
Developing a vaccine against the human immunodeficiency virus (HIV) poses an exceptional challenge. There are no documented cases of immune-mediated clearance of HIV from an infected individual, and no known correlates of immune protection. Although nonhuman primate models of lentivirus infection have provided valuable data about HIV pathogenesis, such models do not predict HIV vaccine efficacy in humans. The combined lack of a predictive animal model and undefined biomarkers of immune protection against HIV necessitate that vaccines to this pathogen be tested directly in clinical trials. Adaptive clinical trial designs can accelerate vaccine development by rapidly screening out poor vaccines while extending the evaluation of efficacious ones, improving the characterization of promising vaccine candidates and the identification of correlates of immune protection.
Resumo:
Tuberculosis is unique among the major infectious diseases in that it lacks accurate rapid point-of-care diagnostic tests. Failure to control the spread of tuberculosis is largely due to our inability to detect and treat all infectious cases of pulmonary tuberculosis in a timely fashion, allowing continued Mycobacterium tuberculosis transmission within communities. Currently recommended gold-standard diagnostic tests for tuberculosis are laboratory based, and multiple investigations may be necessary over a period of weeks or months before a diagnosis is made. Several new diagnostic tests have recently become available for detecting active tuberculosis disease, screening for latent M. tuberculosis infection, and identifying drug-resistant strains of M. tuberculosis. However, progress toward a robust point-of-care test has been limited, and novel biomarker discovery remains challenging. In the absence of effective prevention strategies, high rates of early case detection and subsequent cure are required for global tuberculosis control. Early case detection is dependent on test accuracy, accessibility, cost, and complexity, but also depends on the political will and funder investment to deliver optimal, sustainable care to those worst affected by the tuberculosis and human immunodeficiency virus epidemics. This review highlights unanswered questions, challenges, recent advances, unresolved operational and technical issues, needs, and opportunities related to tuberculosis diagnostics.
Resumo:
Miliary tuberculosis is a rare disease that is difficult to diagnose because of its non-specific presentation. It should be suspected in elderly patients who complaint of failure to thrive, unexplained fatigue and weight loss. Using a clinical situation where the diagnosis was made only at autopsy, we briefly review the epidemiology of miliary tuberculosis and propose recommendations for the diagnosis and the prophylaxis of latent tuberculosis. Finally, we discuss criteria to perform epidemiological investigations among close contacts in this situation.