956 resultados para Transport d`ammonium
Resumo:
Bicaudal-D (Bic-D), Egalitarian (Egl), microtubules and their motors form a transport machinery that localizes a remarkable diversity of mRNAs to specific cellular regions during oogenesis and embryogenesis. Bic-D family proteins also promote dynein-dependent transport of Golgi vesicles, lipid droplets, synaptic vesicles and nuclei. However, the transport of these different cargoes is still poorly understood. We searched for novel proteins that either mediate Bic-Ddependent transport processes or are transported by them. Clathrin heavy chain (Chc) co-immunopurifies with Bic-D in embryos and ovaries, and a fraction of Chc colocalizes with Bic-D. Both proteins control posterior patterning of the Drosophila oocyte and endocytosis. Although the role of Chc in endocytosis is well established, our results show that Bic-D is also needed for the elevated endocytic activity at the posterior of the oocyte. Apart fromaffecting endocytosis indirectly by its role in osk mRNA localization, Bic-D is also required to transport Chc mRNA into the oocyte and for transport and proper localization of Chc protein to the oocyte cortex, pointing to an additional,more direct role of Bic-D in the endocytic pathway. Furthermore, similar to Bic-D, Chc also contributes to proper localization of osk mRNA and to oocyte growth. However, in contrast to other endocytic components and factors of the endocytic recycling pathway, such as Rabenosyn-5 (Rbsn-5) and Rab11, Chc is needed during early stages of oogenesis (from stage 6 onwards) to localize oskmRNA correctly.Moreover,we also uncovered a novel, presumably endocytosis-independent, role of Chc in the establishment of microtubule polarity in stage 6 oocytes.
Resumo:
Stable water isotope (delta(18)O, deltaD) data from a high elevation (5100 masl) ice core recovered from the Tien Shan Mountains, Kyrgyzstan, display a seasonal cycle in deuterium excess (d = deltaD - 8* delta(18)O) related to changes in the regional hydrologic cycle during 1994 - 2000. While there is a strong correlation (r(2) = 0.98) between delta(18)O and dD in the ice core samples, the regression slope (6.9) and mean d value (23.0) are significantly different than the global meteoric water line values. The resulting time-series ice core d profile contains distinct winter maxima and summer minima, with a yearly d amplitude of similar to 15 - 20parts per thousand. Local-scale processes that may affect d values preserved in the ice core are not consistent with the observed seasonal variability. Data from Central Asian monitoring sites in the Global Network of Isotopes in Precipitation (GNIP) have similar seasonal d changes. We suggest that regional-scale hydrological conditions, including seasonal changes in moisture source, transport, and recycling in the Caspian/ Aral Sea region, are responsible for the observed spatial and temporal d variability.
Resumo:
The spatial distributions of non-reactive natural tracers (anions, stable water isotopes, noble gases) in pore water of clay-rich formations were studied at nine sites. Regular curved profiles were identified in most cases. Transport modeling considering diffusion, advection and available constraints on the paleo-hydrogeological evolution indicates generally that diffusion alone can explain the observations, whereas a marked advective component would distort the profiles and so is not consistent with the data.
Resumo:
Air was sampled from the porous firn layer at the NEEM site in Northern Greenland. We use an ensemble of ten reference tracers of known atmospheric history to characterise the transport properties of the site. By analysing uncertainties in both data and the reference gas atmospheric histories, we can objectively assign weights to each of the gases used for the depth-diffusivity reconstruction. We define an objective root mean square criterion that is minimised in the model tuning procedure. Each tracer constrains the firn profile differently through its unique atmospheric history and free air diffusivity, making our multiple-tracer characterisation method a clear improvement over the commonly used single-tracer tuning. Six firn air transport models are tuned to the NEEM site; all models successfully reproduce the data within a 1σ Gaussian distribution. A comparison between two replicate boreholes drilled 64 m apart shows differences in measured mixing ratio profiles that exceed the experimental error. We find evidence that diffusivity does not vanish completely in the lock-in zone, as is commonly assumed. The ice age- gas age difference (1 age) at the firn-ice transition is calculated to be 182+3−9 yr. We further present the first intercomparison study of firn air models, where we introduce diagnostic scenarios designed to probe specific aspects of the model physics. Our results show that there are major differences in the way the models handle advective transport. Furthermore, diffusive fractionation of isotopes in the firn is poorly constrained by the models, which has consequences for attempts to reconstruct the isotopic composition of trace gases back in time using firn air and ice core records.
Resumo:
Deuterium (δD) and oxygen (δ18O) isotopes are powerful tracers of the hydrological cycle and have been extensively used for paleoclimate reconstructions as they can provide information on past precipitation, temperature and atmospheric circulation. More recently, the use of δ17O excess derived from precise measurement of δ17O and δ18O gives new and additional insights in tracing the hydrological cycle whereas uncertainties surround this proxy. However, 17O excess could provide additional information on the atmospheric conditions at the moisture source as well as about fractionations associated with transport and site processes. In this paper we trace water stable isotopes (δD,δ17O and δ18O) along their path from precipitation to cave drip water and finally to speleothem fluid inclusions for Milandre cave in northwestern Switzerland. A two year-long daily resolved precipitation isotope record close to the cave site is compared to collected cave drip water (3 months average resolution) and fluid inclusions of modern and Holocene stalagmites. Amount weighted mean δD,δ18O and δ17O are -71.0‰, -9.9‰, -5.2‰ for precipitation, -60.3‰, -8.7‰, -4.6‰ for cave drip water and -61.3‰, -8.3‰, -4.7‰ for recent fluid inclusions respectively. Second order parameters have also been derived in precipitation and drip water and present similar values with 18 per meg for 17O excess whereas d-excess is 1.5‰ more negative in drip water. Furthermore, the atmospheric signal is shifted towards enriched values in the drip water and fluid inclusions (Δ of ~ + 10‰ for δD). The isotopic composition of cave drip water exhibits a weak seasonal signal which is shifted by around 8 - 10 months (groundwater residence time) when compared to the precipitation. Moreover, we carried out the first δ17O measurement in speleothem fluid inclusions, as well as the first comparison of the δ17 O behaviour from the meteoric water to the fluid inclusions entrapment in speleothems. This study on precipitation, drip water and fluid inclusions will be used as a speleothem proxy calibration for Milandre cave in order to reconstruct paleotemperatures and moisture source variations for Western Central Europe.
Resumo:
Glutamate transporters maintain synaptic concentration of the excitatory neurotransmitter below neurotoxic levels. Their transport cycle consists of cotransport of glutamate with three sodium ions and one proton, followed by countertransport of potassium. Structural studies proposed that a highly conserved serine located in the binding pocket of the homologous GltPh coordinates l-aspartate as well as the sodium ion Na1. To experimentally validate these findings, we generated and characterized several mutants of the corresponding serine residue, Ser-364, of human glutamate transporter SLC1A2 (solute carrier family 1 member 2), also known as glutamate transporter GLT-1 and excitatory amino acid transporter EAAT2. S364T, S364A, S364C, S364N, and S364D were expressed in HEK cells and Xenopus laevis oocytes to measure radioactive substrate transport and transport currents, respectively. All mutants exhibited similar plasma membrane expression when compared with WT SLC1A2, but substitutions of serine by aspartate or asparagine completely abolished substrate transport. On the other hand, the threonine mutant, which is a more conservative mutation, exhibited similar substrate selectivity, substrate and sodium affinities as WT but a lower selectivity for Na(+) over Li(+). S364A and S364C exhibited drastically reduced affinities for each substrate and enhanced selectivity for l-aspartate over d-aspartate and l-glutamate, and lost their selectivity for Na(+) over Li(+). Furthermore, we extended the analysis of our experimental observations using molecular dynamics simulations. Altogether, our findings confirm a pivotal role of the serine 364, and more precisely its hydroxyl group, in coupling sodium and substrate fluxes.
Resumo:
Completion of fungal, plant and human genomes paved the way to the identification of erythrocytic rhesus proteins and their kidney homologs as ammonium transporters. Ammonium is the preferred nitrogen source of bacteria and fungi, and plants acquire nitrogen from the soil in the form of ammonium [1]. In animals and humans, assimilated forms of nitrogen - amino acids - are much preferred for nutrition, and, in the case of ammonotelic animals, ammonium is used for the excretion of nitrogen instead. In the human kidney, ammonium is produced, reabsorbed and excreted as a means to maintain pH balance and to get rid of surplus inorganic nitrogen. Whether ammonium transport also has a role in the pH regulation of other organs is not known and the molecular mechanisms were not, up to now, understood.
Resumo:
Particular interest has been directed towards the macrophage as a primary antineoplastic cell due to its tumoricidal properties in vitro and the observation that an inverse relationship exists between the number of macrophages infiltrating a tumor and metastatic potential. The mechanism of macrophage-mediated injury of tumor cells remains unknown. Recently, it has been shown that injured tumor cells have defective mitochondrial respiration. Our studies have shown that activated macrophages can release soluble factors which can alter tumor cell respiration.^ The effects of a conditioned supernatant (CS) from cultures of activated macrophages on tumor cell (TC) mitochondrial respiration was studied. CS was obtained by incubation of BCG-elicited, murine peritoneal macrophage with RPMI-1640 supplemented with 10% FCS and 50 ng/ml bacterial endotoxin. This CS was used to treat cultures of EMT-6 TC for 24 hours. Mitochondrial respiration was measured polarigraphically using a Clark-type oxygen electrode. Cell growth rate was assessed by ('3)H-Thymidine incorporation. Exposure of EMT-6 TC to CS resulted in the inhibition of malate and succinate oxidation 76.6% and 72.9%, respectively. While cytochrome oxidase activity was decreased 61.1%. This inhibition was accompanied by a 98.8% inhibition of DNA synthesis (('3)H-Thymidine incorporation). Inhibition was dose-related with a 21.3% inhibition of succinate oxidase from a 0.3 ml dose of CS and a 50% inhibition with 1.0 mls. Chromatography of CS on Sephacryl S-200 resulted in isolation of an 80,000 and a 55,000 dalton component which contained the respiration inhibiting activity (RIF). These factors were distinct from a 120,000 dalton cytolytic factor determined by bioassay on Actinomycin-D treated L929 cells. RIF activity was also distinct from several other cytostatic factors but was itself associated with 2 peaks of cytostatic activity. Characterization of the RIF activity showed that it was destroyed by trypsin and heat (100(DEGREES)C, 5 min). It was stable over a broad range of pH (4-9) and its production was inhibited by cycloheximide. The RIF did not have a direct effect on isolated mitochondria of TC nor did it induce the formation of a stable intracellular toxin for mitochondria.^ In conclusion, activated macrophages synthesize and secrete an 80,000 and a 55,000 dalton protein which inhibits the mitochondrial metabolism of TC. These factors induce a cytostatic but not a cytolytic effect on TC.^ The macrophage plays a role in the control of normal and tumor cell growth and in tissue involution. Inhibition of respiration may be one mechanism used by macrophages to control cell growth.^
Resumo:
Despite the popularity of the positron emitting glucose analog, ($\sp{18}$F) -2-deoxy-2-fluoro-D-glucose (2FDG), for the noninvasive "metabolic imaging" of organs with positron emission tomography (PET), the physiological basis for the tracer has not been tested, and the potential of 2FDG for the rapid kinetic analysis of altered glucose metabolism in the intact heart has not been fully exploited. We, therefore, developed a quantitative method to characterize metabolic changes of myocardial glucose metabolism noninvasively and with high temporal resolution.^ The first objective of the work was to provide direct evidence that the initial steps in the metabolism of 2FDG are the same as for glucose and that 2FDG is retained by the tissue in proportion to the rate of glucose utilization. The second objective was to characterize the kinetic changes in myocardial glucose transport and phosphorylation in response to changes in work load, competing substrates, acute ischemia and reperfusion, and the addition of insulin. To assess changes in myocardial glucose metabolism isolated working rat hearts were perfused with glucose and 2FDG. Tissue uptake of 2FDG and the input function were measured on-line by external detection. The steady state rate of 2FDG phosphorylation was determined by graphical analysis of 2FDG time-activity curves.^ The rate of 2FDG uptake was linear with time and the tracer was retained in its phosphorylated form. Tissue accumulation of 2FDG decreased within seconds with a reduction in work load, in the presence of competing substrates, and during reperfusion after global ischemia. Thus, most interventions known to alter glucose metabolism induced rapid parallel changes in 2FDG uptake. By contrast, insulin caused a significant increase in 2FDG accumulation only in hearts from fasted animals when perfused at a sub-physiological work load. The mechanism for this phenomenon is not known but may be related to the existence of two different glucose transporter systems and/or glycogen metabolism in the myocardial cell.^ It is concluded that (1) 2FDG traces glucose uptake and phosphorylation in the isolated working rat heart; and (2) early and transient kinetic changes in glucose metabolism can be monitored with high temporal resolution with 2FDG and a simple positron coincidence counting system. The new method has revealed transients of myocardial glucose metabolism, which would have remained unnoticed with conventional methods. These transients are not only important for the interpretation of glucose metabolic PET scans, but also provide insights into mechanisms of glucose transport and phosphorylation in heart muscle. ^