883 resultados para Transform infra-red spectroscopy


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over the recent years chirped-pulse, Fourier-transform microwave (CP-FTMW) spectrometers have changed the scope of rotational spectroscopy. The broad frequency and large dynamic range make possible structural determinations in molecular systems of increasingly larger size from measurements of heavy atom (C-13, N-15, O-18) isotopes recorded in natural abundance in the same spectrum as that of the parent isotopic species. The design of a broadband spectrometer operating in the 2-8 GHz frequency range with further improvements in sensitivity is presented. The current CP-FTMW spectrometer performance is benchmarked in the analyses of the rotational spectrum of the water heptamer, (H2O)(7), in both 2-8 GHz and 6-18 GHz frequency ranges. Two isomers of the water heptamer have been observed in a pulsed supersonic molecular expansion. High level ab initio structural searches were performed to provide plausible low-energy candidates which were directly compared with accurate structures provided from broadband rotational spectra. The full substitution structure of the most stable species has been obtained through the analysis of all possible singly-substituted isotopologues ((H2O)-O-18 and HDO), and a least-squares r(m)((1)) geometry of the oxygen framework determined from 16 different isotopic species compares with the calculated O-O equilibrium distances at the 0.01 angstrom level. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A high resolution luminescence study of NaLaF4: 1%Pr3+, 5%Yb3+ and NaLaF4: 1%Ce3+, 5%Yb3+ in the UV to NIR spectral range using a InGaAs detector and a fourier transform interferometer is reported. Although the Pr3+(P-3(0) -> (1)G(4), Yb3+(F-2(7/2) -> F-2(5/2)) energy transfer step takes place, significant Pr3+ (1)G(4) emission around 993, 1330 and 1850 nm is observed. No experimental proof for the second energy transfer step in the down-conversion process between Pr3+ and Yb3+ can be given. In the case of NaLaF4: Ce3+, Yb3+ it is concluded that the observed Yb3+ emission upon Ce3+ 5d excitation is the result of a charge transfer process instead of down-conversion. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ABSTRACT: Fourier transform infrared spectroscopy (FTIRS) can provide detailed information on organic and minerogenic constituents of sediment records. Based on a large number of sediment samples of varying age (0�340 000 yrs) and from very diverse lake settings in Antarctica, Argentina, Canada, Macedonia/Albania, Siberia, and Sweden, we have developed universally applicable calibration models for the quantitative determination of biogenic silica (BSi; n = 816), total inorganic carbon (TIC; n = 879), and total organic carbon (TOC; n = 3164) using FTIRS. These models are based on the differential absorbance of infrared radiation at specific wavelengths with varying concentrations of individual parameters, due to molecular vibrations associated with each parameter. The calibration models have low prediction errors and the predicted values are highly correlated with conventionally measured values (R = 0.94�0.99). Robustness tests indicate the accuracy of the newly developed FTIRS calibration models is similar to that of conventional geochemical analyses. Consequently FTIRS offers a useful and rapid alternative to conventional analyses for the quantitative determination of BSi, TIC, and TOC. The rapidity, cost-effectiveness, and small sample size required enables FTIRS determination of geochemical properties to be undertaken at higher resolutions than would otherwise be possible with the same resource allocation, thus providing crucial sedimentological information for climatic and environmental reconstructions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract We demonstrate the use of Fourier transform infrared spectroscopy (FTIRS) to make quantitative measures of total organic carbon (TOC), total inorganic carbon (TIC) and biogenic silica (BSi) concentrations in sediment. FTIRS is a fast and costeffective technique and only small sediment samples are needed (0.01 g). Statistically significant models were developed using sediment samples from northern Sweden and were applied to sediment records from Sweden, northeast Siberia and Macedonia. The correlation between FTIRS-inferred values and amounts of biogeochemical constituents assessed conventionally varied between r = 0.84–0.99 for TOC, r = 0.85– 0.99 for TIC, and r = 0.68–0.94 for BSi. Because FTIR spectra contain information on a large number of both inorganic and organic components, there is great potential for FTIRS to become an important tool in paleolimnology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structure of the tetrameric K+ channel from Streptomyces lividans in a lipid bilayer environment was studied by polarized attenuated total reflection Fourier transform infrared spectroscopy. The channel displays approximately 43% α-helical and 25% β-sheet content. In addition, H/D exchange experiments show that only 43% of the backbone amide protons are exchangeable with solvent. On average, the α-helices are tilted 33° normal to the membrane surface. The results are discussed in relationship to the lactose permease of Escherichia coli, a membrane transport protein.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experimental evidence for proton transfer via a hydrogen-bonded network in a membrane protein is presented. Bacteriorhodopsin's proton transfer mechanism on the proton uptake pathway between Asp-96 and the Schiff base in the M-to-N transition was determined. The slowdown of this transfer by removal of the proton donor in the Asp-96-->Asn mutant can be accelerated again by addition of small weak acid anions such as azide. Fourier-transform infrared experiments show in the Asp-96-->Asn mutant a transient protonation of azide bound to the protein in the M-to-N transition and, due to the addition of azide, restoration of the IR continuum band changes as seen in wild-type bR during proton pumping. The continuum band changes indicate fast proton transfer on the uptake pathway in a hydrogen-bonded network for wild-type bR and the Asp-96-->Asn mutant with azide. Since azide is able to catalyze proton transfer steps also in several kinetically defective bR mutants and in other membrane proteins, our finding might point to a general element of proton transfer mechanisms in proteins.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Levels of lignin and hydroxycinnamic acid wall components in three genera of forage grasses (Lolium,Festuca and Dactylis) have been accurately predicted by Fourier-transform infrared spectroscopy using partial least squares models correlated to analytical measurements. Different models were derived that predicted the concentrations of acid detergent lignin, total hydroxycinnamic acids, total ferulate monomers plus dimers, p-coumarate and ferulate dimers in independent spectral test data from methanol extracted samples of perennial forage grass with accuracies of 92.8%, 86.5%, 86.1%, 59.7% and 84.7% respectively, and analysis of model projection scores showed that the models relied generally on spectral features that are known absorptions of these compounds. Acid detergent lignin was predicted in samples of two species of energy grass, (Phalaris arundinacea and Pancium virgatum) with an accuracy of 84.5%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two energy grass species, switch grass, a North American tuft grass, and reed canary grass, a European native, are likely to be important sources of biomass in Western Europe for the production of biorenewable energy. Matching chemical composition to conversion efficiency is a primary goal for improvement programmes and for determining the quality of biomass feed-stocks prior to use and there is a need for methods which allow cost effective characterisation of chemical composition at high rates of sample through-put. In this paper we demonstrate that nitrogen content and alkali index, parameters greatly influencing thermal conversion efficiency, can be accurately predicted in dried samples of these species grown under a range of agronomic conditions by partial least square regression of Fourier transform infrared spectra (R2 values for plots of predicted vs. measured values of 0.938 and 0.937, respectively). We also discuss the prediction of carbon and ash content in these samples and the application of infrared based predictive methods for the breeding improvement of energy grasses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effectiveness of using thermally activated hydrotalcite materials has been investigated for the removal of arsenate, vanadate, and molybdate in individual and mixed solutions. Results show that increasing the Mg,Al ratio to 4:1 causes an increase in the percentage of anions removed from solution. The order of affinity of the three anions analysed in this investigation is arsenate, vanadate, and molybdate. By comparisons with several synthetic hydrotalcite materials, the hydrotalcite structure in the seawater neutralised red mud (SWN-RM) has been determined to consist of magnesium and aluminium with a ratio between 3.5:1 and 4:1. Thermally activated seawater neutralised red mud removes at least twice the concentration of anionic species than thermally activated red mud alone, due to the formation of 40 to 60 % Bayer hydrotalcite during the neutralisation process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption of Congo Red (CR) by ball-milled sugarcane bagasse was evaluated in an aqueous batch system. CR adsorption capacity increased significantly with small changes in bagasse surface area. CR removal decreased with increasing solution pH from 5.0 to 10.0. Maximum adsorption capacity was 38.2 mg/g bagasse at a CR concentration of 500 mg/L. The equilibrium isotherm fitted the Freundlich model and the adsorption kinetics obeyed pseudo-second order equation. CR adsorption obeyed the intra-particle diffusion model very well with bagasse surface area in the range of 0.58–0.66 m2/g, whereas it was controlled by multi-adsorption stages with bagasse surface area in the range of 1.31–1.82 m2/g. Thermodynamic analysis indicated that the adsorption process is an exothermic and spontaneous process. Fourier transform infrared analysis of bagasse containing adsorbed CR indicated interactions between the carboxyl and hydroxyl groups of bagasse and CR function groups.