817 resultados para Tracking error
Resumo:
This paper describes a real-time multi-camera surveillance system that can be applied to a range of application domains. This integrated system is designed to observe crowded scenes and has mechanisms to improve tracking of objects that are in close proximity. The four component modules described in this paper are (i) motion detection using a layered background model, (ii) object tracking based on local appearance, (iii) hierarchical object recognition, and (iv) fused multisensor object tracking using multiple features and geometric constraints. This integrated approach to complex scene tracking is validated against a number of representative real-world scenarios to show that robust, real-time analysis can be performed. Copyright (C) 2007 Hindawi Publishing Corporation. All rights reserved.
Resumo:
We analyze a fully discrete spectral method for the numerical solution of the initial- and periodic boundary-value problem for two nonlinear, nonlocal, dispersive wave equations, the Benjamin–Ono and the Intermediate Long Wave equations. The equations are discretized in space by the standard Fourier–Galerkin spectral method and in time by the explicit leap-frog scheme. For the resulting fully discrete, conditionally stable scheme we prove an L2-error bound of spectral accuracy in space and of second-order accuracy in time.
Resumo:
Easterly waves (EWs) are prominent features of the intertropical convergence zone (ITCZ), found in both the Atlantic and Pacific during the Northern Hemisphere summer and fall, where they commonly serve as precursors to hurricanes over both basins.Alarge proportion of Atlantic EWs are known to form over Africa, but the origin of EWs over the Caribbean and east Pacific in particular has not been established in detail. In this study reanalyses are used to examine the coherence of the large-scale wave signatures and to obtain track statistics and energy conversion terms for EWs across this region. Regression analysis demonstrates that some EW kinematic structures readily propagate between the Atlantic and east Pacific, with the highest correlations observed across Costa Rica and Panama. Track statistics are consistent with this analysis and suggest that some individual waves are maintained as they pass from the Atlantic into the east Pacific, whereas others are generated locally in the Caribbean and east Pacific. Vortex anomalies associated with the waves are observed on the leeward side of the Sierra Madre, propagating northwestward along the coast, consistent with previous modeling studies of the interactions between zonal flow and EWs with model topography similar to the Sierra Madre. An energetics analysis additionally indicates that the Caribbean low-level jet and its extension into the east Pacific—known as the Papagayo jet—are a source of energy for EWs in the region. Two case studies support these statistics, as well as demonstrate the modulation of EW track and storm development location by the MJO.
Resumo:
In a “busy” auditory environment listeners can selectively attend to one of several simultaneous messages by tracking one listener's voice characteristics. Here we ask how well other cues compete for attention with such characteristics, using variations in the spatial position of sound sources in a (virtual) seminar room. Listeners decided which of two simultaneous target words belonged in an attended “context” phrase when it was played with a simultaneous “distracter” context that had a different wording. Talker difference was in competition with a position difference, so that the target‐word chosen indicates which cue‐type the listener was tracking. The main findings are that room‐acoustic factors provide some tracking cues, whose salience increases with distance separation. This increase is more prominent in diotic conditions, indicating that these cues are largely monaural. The room‐acoustic factors might therefore be the spectral‐ and temporal‐envelope effects of reverberation on the timbre of speech. By contrast, the salience of cues associated with differences in sounds' bearings tends to decrease with distance, and these cues are more effective in dichotic conditions. In other conditions, where a distance and a bearing difference cooperate, they can completely override a talker difference at various distances.
Resumo:
The analysis-error variance of a 3D-FGAT assimilation is examined analytically using a simple scalar equation. It is shown that the analysis-error variance may be greater than the error variances of the inputs. The results are illustrated numerically with a scalar example and a shallow-water model.
Resumo:
A new man-made target tracking algorithm integrating features from (Forward Looking InfraRed) image sequence is presented based on particle filter. Firstly, a multiscale fractal feature is used to enhance targets in FLIR images. Secondly, the gray space feature is defined by Bhattacharyya distance between intensity histograms of the reference target and a sample target from MFF (Multi-scale Fractal Feature) image. Thirdly, the motion feature is obtained by differencing between two MFF images. Fourthly, a fusion coefficient can be automatically obtained by online feature selection method for features integrating based on fuzzy logic. Finally, a particle filtering framework is developed to fulfill the target tracking. Experimental results have shown that the proposed algorithm can accurately track weak or small man-made target in FLIR images with complicated background. The algorithm is effective, robust and satisfied to real time tracking.
Resumo:
Gaussian multi-scale representation is a mathematical framework that allows to analyse images at different scales in a consistent manner, and to handle derivatives in a way deeply connected to scale. This paper uses Gaussian multi-scale representation to investigate several aspects of the derivation of atmospheric motion vectors (AMVs) from water vapour imagery. The contribution of different spatial frequencies to the tracking is studied, for a range of tracer sizes, and a number of tracer selection methods are presented and compared, using WV 6.2 images from the geostationary satellite MSG-2.
Resumo:
Radial basis functions can be combined into a network structure that has several advantages over conventional neural network solutions. However, to operate effectively the number and positions of the basis function centres must be carefully selected. Although no rigorous algorithm exists for this purpose, several heuristic methods have been suggested. In this paper a new method is proposed in which radial basis function centres are selected by the mean-tracking clustering algorithm. The mean-tracking algorithm is compared with k means clustering and it is shown that it achieves significantly better results in terms of radial basis function performance. As well as being computationally simpler, the mean-tracking algorithm in general selects better centre positions, thus providing the radial basis functions with better modelling accuracy
Resumo:
The overall operation and internal complexity of a particular production machinery can be depicted in terms of clusters of multidimensional points which describe the process states, the value in each point dimension representing a measured variable from the machinery. The paper describes a new cluster analysis technique for use with manufacturing processes, to illustrate how machine behaviour can be categorised and how regions of good and poor machine behaviour can be identified. The cluster algorithm presented is the novel mean-tracking algorithm, capable of locating N-dimensional clusters in a large data space in which a considerable amount of noise is present. Implementation of the algorithm on a real-world high-speed machinery application is described, with clusters being formed from machinery data to indicate machinery error regions and error-free regions. This analysis is seen to provide a promising step ahead in the field of multivariable control of manufacturing systems.
Resumo:
A bit-level linear CDMA detector is presented which is based on the minimum variance distortionless response (MVDR) principle. Owing to the interference suppression capability made possible by basing the detector on the MVDR principle and the fact that no inversion of the user correlation matrix is involved, the influence of synchronisation errors is greatly suppressed.
Resumo:
Linear CDMA detectors have emerged as a promising solution to multiple access interference (MAI) suppression. Unfortunately, most existing linear detectors suffer from high sensitivity to synchronisation errors (also termed parameter estimation error), and synchronisation error resistant detectors have so far not been as widely investigated as they should have. This paper extends the minimum variance distortionless response (MVDR) detector, proposed previously by this author (Zheng 2000) for synchronous systems, to asynchronous systems. It has been shown that the MVDR structure is equally effective for asynchronous systems, especially for the weaker users.
Resumo:
This paper presents an enhanced hypothesis verification strategy for 3D object recognition. A new learning methodology is presented which integrates the traditional dichotomic object-centred and appearance-based representations in computer vision giving improved hypothesis verification under iconic matching. The "appearance" of a 3D object is learnt using an eigenspace representation obtained as it is tracked through a scene. The feature representation implicitly models the background and the objects observed enabling the segmentation of the objects from the background. The method is shown to enhance model-based tracking, particularly in the presence of clutter and occlusion, and to provide a basis for identification. The unified approach is discussed in the context of the traffic surveillance domain. The approach is demonstrated on real-world image sequences and compared to previous (edge-based) iconic evaluation techniques.