874 resultados para Time-varying covariance matrices
Resumo:
Recent research suggests that the ability of an extraneous formant to impair intelligibility depends on the variation of its frequency contour. This idea was explored using a method that ensures interference cannot occur through energetic masking. Three-formant (F1+F2+F3) analogues of natural sentences were synthesized using a monotonous periodic source. Target formants were presented monaurally, with the target ear assigned randomly on each trial. A competitor for F2 (F2C) was presented contralaterally; listeners must reject F2C to optimize recognition. In experiment 1, F2Cs with various frequency and amplitude contours were used. F2Cs with time-varying frequency contours were effective competitors; constant-frequency F2Cs had far less impact. To a lesser extent, amplitude contour also influenced competitor impact; this effect was additive. In experiment 2, F2Cs were created by inverting the F2 frequency contour about its geometric mean and varying its depth of variation over a range from constant to twice the original (0%-200%). The impact on intelligibility was least for constant F2Cs and increased up to ∼100% depth, but little thereafter. The effect of an extraneous formant depends primarily on its frequency contour; interference increases as the depth of variation is increased until the range exceeds that typical for F2 in natural speech.
Resumo:
Recent research suggests that the ability of an extraneous formant to impair intelligibility depends on the variation of its frequency contour. This idea was explored using a method that ensures interference occurs only through informational masking. Three-formant analogues of sentences were synthesized using a monotonous periodic source (F0 = 140 Hz). Target formants were presented monaurally; the target ear was assigned randomly on each trial. A competitor for F2 (F2C) was presented contralaterally; listeners must reject F2C to optimize recognition. In experiment 1, F2Cs with various frequency and amplitude contours were used. F2Cs with time-varying frequency contours were effective competitors; constant-frequency F2Cs had far less impact. Amplitude contour also influenced competitor impact; this effect was additive. In experiment 2, F2Cs were created by inverting the F2 frequency contour about its geometric mean and varying its depth of variation over a range from constant to twice the original (0–200%). The impact on intelligibility was least for constant F2Cs and increased up to ~100% depth, but little thereafter. The effect of an extraneous formant depends primarily on its frequency contour; interference increases as the depth of variation is increased until the range exceeds that typical for F2 in natural speech.
Resumo:
Fermentation processes as objects of modelling and high-quality control are characterized with interdependence and time-varying of process variables that lead to non-linear models with a very complex structure. This is why the conventional optimization methods cannot lead to a satisfied solution. As an alternative, genetic algorithms, like the stochastic global optimization method, can be applied to overcome these limitations. The application of genetic algorithms is a precondition for robustness and reaching of a global minimum that makes them eligible and more workable for parameter identification of fermentation models. Different types of genetic algorithms, namely simple, modified and multi-population ones, have been applied and compared for estimation of nonlinear dynamic model parameters of fed-batch cultivation of S. cerevisiae.
Resumo:
Magnetoencephalographic (MEG) signals, like electroencephalographic (EEG) measures, are the direct extracranial manifestations of neuronal activation. The two techniques can detect time-varying changes in electromagnetic activity with a sub-millisecond time resolution. Extra-cranial electromagnetic measures are the cornerstone of the non-invasive diagnostic armamentarium in patients with epilepsy. Their extremely high temporal resolution – comparable to intracranial recordings – is the basis for a precise definition of onset and propagation of ictal and interictal abnormalities. Given the cost of the infrastructure and equipment, MEG has yet to develop into a routinely applicable diagnostic tool in clinical settings. However, in recent years, an increasing number of patients with epilepsy have been investigated – usually in the context of presurgical evaluation of refractory epilepsies – and initial encouraging results have been reported. We will briefly review the principles and the technology behind MEG and its contribution in the diagnostic work-up of patients with epilepsy.
Resumo:
It is shown that an electromagnetic wave equation in time domain is reduced in paraxial approximation to an equation similar to the Schrodinger equation but in which the time and space variables play opposite roles. This equation has solutions in form of time-varying pulses with the Airy function as an envelope. The pulses are generated by a source point with an Airy time varying field and propagate in vacuum preserving their shape and magnitude. The motion is according to a quadratic law with the velocity changing from infinity at the source point to zero in infinity. These one-dimensional results are extended to the 3D+time case when a similar Airy-Bessel pulse is excited by the field at a plane aperture. The same behaviour of the pulses, the non-diffractive preservation and their deceleration, is found. © 2011 IEEE.
Resumo:
Az 1970-es évek olajválságait követő stagflációs periódusok óta gyakorlatilag minden nagyobb áremelkedés alkalmával felerősödnek a kedvezőtlen makrogazdasági hatásokkal kapcsolatos félelmek, miközben a tapasztalat azt mutatja, hogy az importőröket egyre kevésbé érinti az olaj reálárának alakulása. A gyengülő hatások okaként Blanchard-Galí [2007] a gazdaságok hatékonyabb és rugalmasabb működését jelölte meg, míg Kilian [2010] szerint a 2000 utáni áremelkedést a kedvező világgazdasági környezet fűtötte, ami ellensúlyozta a magasabb ár okozta negatív folyamatokat. A tanulmány Kilian [2009] modelljének kiterjesztésével, időben változó paraméterű ökonometriai eljárással vizsgálja a két megközelítés összeegyeztethetőségét. Az eredmények a hipotézisek egymást kiegészítő kapcsolatára engednek következtetni, azaz a makrogazdasági következmények szempontjából nem maga az ár, hanem annak kiváltó okai lényegesek, ugyanakkor e mögöttes tényezők hatása az elmúlt évtizedekben folyamatosan változott. _____ Many economists argue that the stagflation periods of the 1970s were related to the two main oil crises. However, experience shows that these effects were eliminated over the decades, e. g. oil-importing economies enjoyed solid growth and low inflation when oil prices surged in the 2000s. Blanchard and Galí (2007) found that economies became more effective and elastic in handling high energy prices, while Kilian (2010) took as the main reason for the weakening macroeconomic effects of oil-price shocks the structural differences behind the price changes. The article sets out to test the compatibility of the two rival theories, using time-varying parameter models. The results show that both hypotheses can be correct concurrently: the structure of the change in price matters, but the impulse responses varied over time.
Resumo:
Exchange rate economics has achieved substantial development in the past few decades. Despite extensive research, a large number of unresolved problems remain in the exchange rate debate. This dissertation studied three puzzling issues aiming to improve our understanding of exchange rate behavior. Chapter Two used advanced econometric techniques to model and forecast exchange rate dynamics. Chapter Three and Chapter Four studied issues related to exchange rates using the theory of New Open Economy Macroeconomics. ^ Chapter Two empirically examined the short-run forecastability of nominal exchange rates. It analyzed important empirical regularities in daily exchange rates. Through a series of hypothesis tests, a best-fitting fractionally integrated GARCH model with skewed student-t error distribution was identified. The forecasting performance of the model was compared with that of a random walk model. Results supported the contention that nominal exchange rates seem to be unpredictable over the short run in the sense that the best-fitting model cannot beat the random walk model in forecasting exchange rate movements. ^ Chapter Three assessed the ability of dynamic general-equilibrium sticky-price monetary models to generate volatile foreign exchange risk premia. It developed a tractable two-country model where agents face a cash-in-advance constraint and set prices to the local market; the exogenous money supply process exhibits time-varying volatility. The model yielded approximate closed form solutions for risk premia and real exchange rates. Numerical results provided quantitative evidence that volatile risk premia can endogenously arise in a new open economy macroeconomic model. Thus, the model had potential to rationalize the Uncovered Interest Parity Puzzle. ^ Chapter Four sought to resolve the consumption-real exchange rate anomaly, which refers to the inability of most international macro models to generate negative cross-correlations between real exchange rates and relative consumption across two countries as observed in the data. While maintaining the assumption of complete asset markets, this chapter introduced endogenously segmented asset markets into a dynamic sticky-price monetary model. Simulation results showed that such a model could replicate the stylized fact that real exchange rates tend to move in an opposite direction with respect to relative consumption. ^
Resumo:
Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.
Resumo:
Exchange rate economics has achieved substantial development in the past few decades. Despite extensive research, a large number of unresolved problems remain in the exchange rate debate. This dissertation studied three puzzling issues aiming to improve our understanding of exchange rate behavior. Chapter Two used advanced econometric techniques to model and forecast exchange rate dynamics. Chapter Three and Chapter Four studied issues related to exchange rates using the theory of New Open Economy Macroeconomics. Chapter Two empirically examined the short-run forecastability of nominal exchange rates. It analyzed important empirical regularities in daily exchange rates. Through a series of hypothesis tests, a best-fitting fractionally integrated GARCH model with skewed student-t error distribution was identified. The forecasting performance of the model was compared with that of a random walk model. Results supported the contention that nominal exchange rates seem to be unpredictable over the short run in the sense that the best-fitting model cannot beat the random walk model in forecasting exchange rate movements. Chapter Three assessed the ability of dynamic general-equilibrium sticky-price monetary models to generate volatile foreign exchange risk premia. It developed a tractable two-country model where agents face a cash-in-advance constraint and set prices to the local market; the exogenous money supply process exhibits time-varying volatility. The model yielded approximate closed form solutions for risk premia and real exchange rates. Numerical results provided quantitative evidence that volatile risk premia can endogenously arise in a new open economy macroeconomic model. Thus, the model had potential to rationalize the Uncovered Interest Parity Puzzle. Chapter Four sought to resolve the consumption-real exchange rate anomaly, which refers to the inability of most international macro models to generate negative cross-correlations between real exchange rates and relative consumption across two countries as observed in the data. While maintaining the assumption of complete asset markets, this chapter introduced endogenously segmented asset markets into a dynamic sticky-price monetary model. Simulation results showed that such a model could replicate the stylized fact that real exchange rates tend to move in an opposite direction with respect to relative consumption.
Resumo:
Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.
Resumo:
A landfill represents a complex and dynamically evolving structure that can be stochastically perturbed by exogenous factors. Both thermodynamic (equilibrium) and time varying (non-steady state) properties of a landfill are affected by spatially heterogenous and nonlinear subprocesses that combine with constraining initial and boundary conditions arising from the associated surroundings. While multiple approaches have been made to model landfill statistics by incorporating spatially dependent parameters on the one hand (data based approach) and continuum dynamical mass-balance equations on the other (equation based modelling), practically no attempt has been made to amalgamate these two approaches while also incorporating inherent stochastically induced fluctuations affecting the process overall. In this article, we will implement a minimalist scheme of modelling the time evolution of a realistic three dimensional landfill through a reaction-diffusion based approach, focusing on the coupled interactions of four key variables - solid mass density, hydrolysed mass density, acetogenic mass density and methanogenic mass density, that themselves are stochastically affected by fluctuations, coupled with diffusive relaxation of the individual densities, in ambient surroundings. Our results indicate that close to the linearly stable limit, the large time steady state properties, arising out of a series of complex coupled interactions between the stochastically driven variables, are scarcely affected by the biochemical growth-decay statistics. Our results clearly show that an equilibrium landfill structure is primarily determined by the solid and hydrolysed mass densities only rendering the other variables as statistically "irrelevant" in this (large time) asymptotic limit. The other major implication of incorporation of stochasticity in the landfill evolution dynamics is in the hugely reduced production times of the plants that are now approximately 20-30 years instead of the previous deterministic model predictions of 50 years and above. The predictions from this stochastic model are in conformity with available experimental observations.
Resumo:
Human use of the oceans is increasingly in conflict with conservation of endangered species. Methods for managing the spatial and temporal placement of industries such as military, fishing, transportation and offshore energy, have historically been post hoc; i.e. the time and place of human activity is often already determined before assessment of environmental impacts. In this dissertation, I build robust species distribution models in two case study areas, US Atlantic (Best et al. 2012) and British Columbia (Best et al. 2015), predicting presence and abundance respectively, from scientific surveys. These models are then applied to novel decision frameworks for preemptively suggesting optimal placement of human activities in space and time to minimize ecological impacts: siting for offshore wind energy development, and routing ships to minimize risk of striking whales. Both decision frameworks relate the tradeoff between conservation risk and industry profit with synchronized variable and map views as online spatial decision support systems.
For siting offshore wind energy development (OWED) in the U.S. Atlantic (chapter 4), bird density maps are combined across species with weights of OWED sensitivity to collision and displacement and 10 km2 sites are compared against OWED profitability based on average annual wind speed at 90m hub heights and distance to transmission grid. A spatial decision support system enables toggling between the map and tradeoff plot views by site. A selected site can be inspected for sensitivity to a cetaceans throughout the year, so as to capture months of the year which minimize episodic impacts of pre-operational activities such as seismic airgun surveying and pile driving.
Routing ships to avoid whale strikes (chapter 5) can be similarly viewed as a tradeoff, but is a different problem spatially. A cumulative cost surface is generated from density surface maps and conservation status of cetaceans, before applying as a resistance surface to calculate least-cost routes between start and end locations, i.e. ports and entrance locations to study areas. Varying a multiplier to the cost surface enables calculation of multiple routes with different costs to conservation of cetaceans versus cost to transportation industry, measured as distance. Similar to the siting chapter, a spatial decisions support system enables toggling between the map and tradeoff plot view of proposed routes. The user can also input arbitrary start and end locations to calculate the tradeoff on the fly.
Essential to the input of these decision frameworks are distributions of the species. The two preceding chapters comprise species distribution models from two case study areas, U.S. Atlantic (chapter 2) and British Columbia (chapter 3), predicting presence and density, respectively. Although density is preferred to estimate potential biological removal, per Marine Mammal Protection Act requirements in the U.S., all the necessary parameters, especially distance and angle of observation, are less readily available across publicly mined datasets.
In the case of predicting cetacean presence in the U.S. Atlantic (chapter 2), I extracted datasets from the online OBIS-SEAMAP geo-database, and integrated scientific surveys conducted by ship (n=36) and aircraft (n=16), weighting a Generalized Additive Model by minutes surveyed within space-time grid cells to harmonize effort between the two survey platforms. For each of 16 cetacean species guilds, I predicted the probability of occurrence from static environmental variables (water depth, distance to shore, distance to continental shelf break) and time-varying conditions (monthly sea-surface temperature). To generate maps of presence vs. absence, Receiver Operator Characteristic (ROC) curves were used to define the optimal threshold that minimizes false positive and false negative error rates. I integrated model outputs, including tables (species in guilds, input surveys) and plots (fit of environmental variables, ROC curve), into an online spatial decision support system, allowing for easy navigation of models by taxon, region, season, and data provider.
For predicting cetacean density within the inner waters of British Columbia (chapter 3), I calculated density from systematic, line-transect marine mammal surveys over multiple years and seasons (summer 2004, 2005, 2008, and spring/autumn 2007) conducted by Raincoast Conservation Foundation. Abundance estimates were calculated using two different methods: Conventional Distance Sampling (CDS) and Density Surface Modelling (DSM). CDS generates a single density estimate for each stratum, whereas DSM explicitly models spatial variation and offers potential for greater precision by incorporating environmental predictors. Although DSM yields a more relevant product for the purposes of marine spatial planning, CDS has proven to be useful in cases where there are fewer observations available for seasonal and inter-annual comparison, particularly for the scarcely observed elephant seal. Abundance estimates are provided on a stratum-specific basis. Steller sea lions and harbour seals are further differentiated by ‘hauled out’ and ‘in water’. This analysis updates previous estimates (Williams & Thomas 2007) by including additional years of effort, providing greater spatial precision with the DSM method over CDS, novel reporting for spring and autumn seasons (rather than summer alone), and providing new abundance estimates for Steller sea lion and northern elephant seal. In addition to providing a baseline of marine mammal abundance and distribution, against which future changes can be compared, this information offers the opportunity to assess the risks posed to marine mammals by existing and emerging threats, such as fisheries bycatch, ship strikes, and increased oil spill and ocean noise issues associated with increases of container ship and oil tanker traffic in British Columbia’s continental shelf waters.
Starting with marine animal observations at specific coordinates and times, I combine these data with environmental data, often satellite derived, to produce seascape predictions generalizable in space and time. These habitat-based models enable prediction of encounter rates and, in the case of density surface models, abundance that can then be applied to management scenarios. Specific human activities, OWED and shipping, are then compared within a tradeoff decision support framework, enabling interchangeable map and tradeoff plot views. These products make complex processes transparent for gaming conservation, industry and stakeholders towards optimal marine spatial management, fundamental to the tenets of marine spatial planning, ecosystem-based management and dynamic ocean management.
Resumo:
Social attitudes, attitudes toward financial risk and attitudes toward deferred gratification are thought to influence many important economic decisions over the life-course. In economic theory, these attitudes are key components in diverse models of behavior, including collective action, saving and investment decisions and occupational choice. The relevance of these attitudes have been confirmed empirically. Yet, the factors that influence them are not well understood. This research evaluates how these attitudes are affected by large disruptive events, namely, a natural disaster and a civil conflict, and also by an individual-specific life event, namely, having children.
By implementing rigorous empirical strategies drawing on rich longitudinal datasets, this research project advances our understanding of how life experiences shape these attitudes. Moreover, compelling evidence is provided that the observed changes in attitudes are likely to reflect changes in preferences given that they are not driven just by changes in financial circumstances. Therefore the findings of this research project also contribute to the discussion of whether preferences are really fixed, a usual assumption in economics.
In the first chapter, I study how altruistic and trusting attitudes are affected by exposure to the 2004 Indian Ocean tsunami as long as ten years after the disaster occurred. Establishing a causal relationship between natural disasters and attitudes presents several challenges as endogenous exposure and sample selection can confound the analysis. I take on these challenges by exploiting plausibly exogenous variation in exposure to the tsunami and by relying on a longitudinal dataset representative of the pre-tsunami population in two districts of Aceh, Indonesia. The sample is drawn from the Study of the Tsunami Aftermath and Recovery (STAR), a survey with data collected both before and after the disaster and especially designed to identify the impact of the tsunami. The altruistic and trusting attitudes of the respondents are measured by their behavior in the dictator and trust games. I find that witnessing closely the damage caused by the tsunami but without suffering severe economic damage oneself increases altruistic and trusting behavior, particularly towards individuals from tsunami affected communities. Having suffered severe economic damage has no impact on altruistic behavior but may have increased trusting behavior. These effects do not seem to be caused by the consequences of the tsunami on people’s financial situation. Instead they are consistent with how experiences of loss and solidarity may have shaped social attitudes by affecting empathy and perceptions of who is deserving of aid and trust.
In the second chapter, co-authored with Ryan Brown, Duncan Thomas and Andrea Velasquez, we investigate how attitudes toward financial risk are affected by elevated levels of insecurity and uncertainty brought on by the Mexican Drug War. To conduct our analysis, we pair the Mexican Family Life Survey (MxFLS), a rich longitudinal dataset ideally suited for our purposes, with a dataset on homicide rates at the month and municipality-level. The homicide rates capture well the overall crime environment created by the drug war. The MxFLS elicits risk attitudes by asking respondents to choose between hypothetical gambles with different payoffs. Our strategy to identify a causal effect has two key components. First, we implement an individual fixed effects strategy which allows us to control for all time-invariant heterogeneity. The remaining time variant heterogeneity is unlikely to be correlated with changes in the local crime environment given the well-documented political origins of the Mexican Drug War. We also show supporting evidence in this regard. The second component of our identification strategy is to use an intent-to-treat approach to shield our estimates from endogenous migration. Our findings indicate that exposure to greater local-area violent crime results in increased risk aversion. This effect is not driven by changes in financial circumstances, but may be explained instead by heightened fear of victimization. Nonetheless, we find that having greater economic resources mitigate the impact. This may be due to individuals with greater economic resources being able to avoid crime by affording better transportation or security at work.
The third chapter, co-authored with Duncan Thomas, evaluates whether attitudes toward deferred gratification change after having children. For this study we also exploit the MxFLS, which elicits attitudes toward deferred gratification (commonly known as time discounting) by asking individuals to choose between hypothetical payments at different points in time. We implement a difference-in-difference estimator to control for all time-invariant heterogeneity and show that our results are robust to the inclusion of time varying characteristics likely correlated with child birth. We find that becoming a mother increases time discounting especially in the first two years after childbirth and in particular for those women without a spouse at home. Having additional children does not have an effect and the effect for men seems to go in the opposite direction. These heterogeneous effects suggest that child rearing may affect time discounting due to generated stress or not fully anticipated spending needs.
Resumo:
A class of multi-process models is developed for collections of time indexed count data. Autocorrelation in counts is achieved with dynamic models for the natural parameter of the binomial distribution. In addition to modeling binomial time series, the framework includes dynamic models for multinomial and Poisson time series. Markov chain Monte Carlo (MCMC) and Po ́lya-Gamma data augmentation (Polson et al., 2013) are critical for fitting multi-process models of counts. To facilitate computation when the counts are high, a Gaussian approximation to the P ́olya- Gamma random variable is developed.
Three applied analyses are presented to explore the utility and versatility of the framework. The first analysis develops a model for complex dynamic behavior of themes in collections of text documents. Documents are modeled as a “bag of words”, and the multinomial distribution is used to characterize uncertainty in the vocabulary terms appearing in each document. State-space models for the natural parameters of the multinomial distribution induce autocorrelation in themes and their proportional representation in the corpus over time.
The second analysis develops a dynamic mixed membership model for Poisson counts. The model is applied to a collection of time series which record neuron level firing patterns in rhesus monkeys. The monkey is exposed to two sounds simultaneously, and Gaussian processes are used to smoothly model the time-varying rate at which the neuron’s firing pattern fluctuates between features associated with each sound in isolation.
The third analysis presents a switching dynamic generalized linear model for the time-varying home run totals of professional baseball players. The model endows each player with an age specific latent natural ability class and a performance enhancing drug (PED) use indicator. As players age, they randomly transition through a sequence of ability classes in a manner consistent with traditional aging patterns. When the performance of the player significantly deviates from the expected aging pattern, he is identified as a player whose performance is consistent with PED use.
All three models provide a mechanism for sharing information across related series locally in time. The models are fit with variations on the P ́olya-Gamma Gibbs sampler, MCMC convergence diagnostics are developed, and reproducible inference is emphasized throughout the dissertation.
Resumo:
The real-time optimization of large-scale systems is a difficult problem due to the need for complex models involving uncertain parameters and the high computational cost of solving such problems by a decentralized approach. Extremum-seeking control (ESC) is a model-free real-time optimization technique which can estimate unknown parameters and can optimize nonlinear time-varying systems using only a measurement of the cost function to be minimized. In this thesis, we develop a distributed version of extremum-seeking control which allows large-scale systems to be optimized without models and with minimal computing power. First, we develop a continuous-time distributed extremum-seeking controller. It has three main components: consensus, parameter estimation, and optimization. The consensus provides each local controller with an estimate of the cost to be minimized, allowing them to coordinate their actions. Using this cost estimate, parameters for a local input-output model are estimated, and the cost is minimized by following a gradient descent based on the estimate of the gradient. Next, a similar distributed extremum-seeking controller is developed in discrete-time. Finally, we consider an interesting application of distributed ESC: formation control of high-altitude balloons for high-speed wireless internet. These balloons must be steered into a favourable formation where they are spread out over the Earth and provide coverage to the entire planet. Distributed ESC is applied to this problem, and is shown to be effective for a system of 1200 ballons subjected to realistic wind currents. The approach does not require a wind model and uses a cost function based on a Voronoi partition of the sphere. Distributed ESC is able to steer balloons from a few initial launch sites into a formation which provides coverage to the entire Earth and can maintain a similar formation as the balloons move with the wind around the Earth.