955 resultados para Thermal behavior study


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Monte Carlo simulations of a model for gamma-Fe2O3 (maghemite) single particle of spherical shape are presented aiming at the elucidation of the specific role played by the finite size and the surface on the anomalous magnetic behavior observed in small particle systems at low temperature. The influence of the finite-size effects on the equilibrium properties of extensive magnitudes, field coolings, and hysteresis loops is studied and compared to the results for periodic boundaries. It is shown that for the smallest sizes the thermal demagnetization of the surface completely dominates the magnetization while the behavior of the core is similar to that of the periodic boundary case, independently of D. The change in shape of the hysteresis loops with D demonstrates that the reversal mode is strongly influenced by the presence of broken links and disorder at the surface

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Human speech is greatly influenced by the speakers' affective state, such as sadness, happiness, grief, guilt, fear, anger, aggression, faintheartedness, shame, sexual arousal, love, amongst others. Attentive listeners discover a lot about the affective state of their dialog partners with no great effort, and without having to talk about it explicitly during a conversation or on the phone. On the other hand, speech dysfunctions, such as slow, delayed or monotonous speech, are prominent features of affective disorders. METHODS: This project was comprised of four studies with healthy volunteers from Bristol (English: n = 117), Lausanne (French: n = 128), Zurich (German: n = 208), and Valencia (Spanish: n = 124). All samples were stratified according to gender, age, and education. The specific study design with different types of spoken text along with repeated assessments at 14-day intervals allowed us to estimate the 'natural' variation of speech parameters over time, and to analyze the sensitivity of speech parameters with respect to form and content of spoken text. Additionally, our project included a longitudinal self-assessment study with university students from Zurich (n = 18) and unemployed adults from Valencia (n = 18) in order to test the feasibility of the speech analysis method in home environments. RESULTS: The normative data showed that speaking behavior and voice sound characteristics can be quantified in a reproducible and language-independent way. The high resolution of the method was verified by a computerized assignment of speech parameter patterns to languages at a success rate of 90%, while the correct assignment to texts was 70%. In the longitudinal self-assessment study we calculated individual 'baselines' for each test person along with deviations thereof. The significance of such deviations was assessed through the normative reference data. CONCLUSIONS: Our data provided gender-, age-, and language-specific thresholds that allow one to reliably distinguish between 'natural fluctuations' and 'significant changes'. The longitudinal self-assessment study with repeated assessments at 1-day intervals over 14 days demonstrated the feasibility and efficiency of the speech analysis method in home environments, thus clearing the way to a broader range of applications in psychiatry. © 2014 S. Karger AG, Basel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thermal analysis, powder diffraction, and Raman scattering as a function of the temperature were carried out on K2BeF4. Moreover, the crystal structure was determined at 293 K from powder diffraction. The compound shows a transition from Pna21 to Pnam space group at 921 K with a transition enthalpy of 5 kJ/mol. The transition is assumed to be first order because the compound shows metastability. Structurally and spectroscopically the transition is similar to those observed in (NH4)2SO4, which suggests that the low-temperature phase is ferroelectric. In order to confirm it, the spontaneous polarization has been computed using an ionic model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The highway departments of the states which use integral abutments in bridge design were contacted in order to study the extent of integral abutment use in skewed bridges and to survey the different guidelines used for analysis and design of integral abutments in skewed bridges. The variation in design assumptions and pile orientations among the various states in their approach to the use of integral abutments on skewed bridges is discussed. The problems associated with the treatment of the approach slab, backfill, and pile cap, and the reason for using different pile orientations are summarized in the report. An algorithm based on a state-of-the-art nonlinear finite element procedure previously developed by the authors was modified and used to study the influence of different factors on behavior of piles in integral abutment bridges. An idealized integral abutment was introduced by assuming that the pile is rigidly cast into the pile cap and that the approach slab offers no resistance to lateral thermal expansion. Passive soil and shear resistance of the cap are neglected in design. A 40-foot H pile (HP 10 X 42) in six typical Iowa soils was analyzed for fully restrained pile head and pinned pile head. According to numerical results, the maximum safe length for fully restrained pile head is one-half the maximum safe length for pinned pile head. If the pile head is partially restrained, the maximum safe length will lie between the two limits. The numerical results from an investigation of the effect of predrilled oversized holes indicate that if the length of the predrilled oversized hole is at least 4 feet below the ground, the vertical load-carrying capacity of the H pile is only reduced by 10 percent for 4 inches of lateral displacement in very stiff clay. With no predrilled oversized hole, the pile failed before the 4-inch lateral displacement was reached. Thus, the maximum safe lengths for integral abutment bridges may be increased by predrilling. Four different typical Iowa layered soils were selected and used in this investigation. In certain situations, compacted soil (> 50 blow count in standard penetration tests) is used as fill on top of natural soil. The numerical results showed that the critical conditions will depend on the length of the compacted soil. If the length of the compacted soil exceeds 4 feet, the failure mechanism for the pile is similar to one in a layer of very stiff clay. That is, the vertical load-carrying capacity of the H pile will be greatly reduced as the specified lateral displacement increases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Large Dynamic Message Signs (DMSs) have been increasingly used on freeways, expressways and major arterials to better manage the traffic flow by providing accurate and timely information to drivers. Overhead truss structures are typically employed to support those DMSs allowing them to provide wider display to more lanes. In recent years, there is increasing evidence that the truss structures supporting these large and heavy signs are subjected to much more complex loadings than are typically accounted for in the codified design procedures. Consequently, some of these structures have required frequent inspections, retrofitting, and even premature replacement. Two manufacturing processes are primarily utilized on truss structures - welding and bolting. Recently, cracks at welding toes were reported for the structures employed in some states. Extremely large loads (e.g., due to high winds) could cause brittle fractures, and cyclic vibration (e.g., due to diurnal variation in temperature or due to oscillations in the wind force induced by vortex shedding behind the DMS) may lead to fatigue damage, as these are two major failures for the metallic material. Wind and strain resulting from temperature changes are the main loads that affect the structures during their lifetime. The American Association of State Highway and Transportation Officials (AASHTO) Specification defines the limit loads in dead load, wind load, ice load, and fatigue design for natural wind gust and truck-induced gust. The objectives of this study are to investigate wind and thermal effects in the bridge type overhead DMS truss structures and improve the current design specifications (e.g., for thermal design). In order to accomplish the objective, it is necessary to study structural behavior and detailed strain-stress of the truss structures caused by wind load on the DMS cabinet and thermal load on the truss supporting the DMS cabinet. The study is divided into two parts. The Computational Fluid Dynamics (CFD) component and part of the structural analysis component of the study were conducted at the University of Iowa while the field study and related structural analysis computations were conducted at the Iowa State University. The CFD simulations were used to determine the air-induced forces (wind loads) on the DMS cabinets and the finite element analysis was used to determine the response of the supporting trusses to these pressure forces. The field observation portion consisted of short-term monitoring of several DMS Cabinet/Trusses and long-term monitoring of one DMS Cabinet/Truss. The short-term monitoring was a single (or two) day event in which several message sign panel/trusses were tested. The long-term monitoring field study extended over several months. Analysis of the data focused on trying to identify important behaviors under both ambient and truck induced winds and the effect of daily temperature changes. Results of the CFD investigation, field experiments and structural analysis of the wind induced forces on the DMS cabinets and their effect on the supporting trusses showed that the passage of trucks cannot be responsible for the problems observed to develop at trusses supporting DMS cabinets. Rather the data pointed toward the important effect of the thermal load induced by cyclic (diurnal) variations of the temperature. Thermal influence is not discussed in the specification, either in limit load or fatigue design. Although the frequency of the thermal load is low, results showed that when temperature range is large the restress range would be significant to the structure, especially near welding areas where stress concentrations may occur. Moreover stress amplitude and range are the primary parameters for brittle fracture and fatigue life estimation. Long-term field monitoring of one of the overhead truss structures in Iowa was used as the research baseline to estimate the effects of diurnal temperature changes to fatigue damage. The evaluation of the collected data is an important approach for understanding the structural behavior and for the advancement of future code provisions. Finite element modeling was developed to estimate the strain and stress magnitudes, which were compared with the field monitoring data. Fatigue life of the truss structures was also estimated based on AASHTO specifications and the numerical modeling. The main conclusion of the study is that thermal induced fatigue damage of the truss structures supporting DMS cabinets is likely a significant contributing cause for the cracks observed to develop at such structures. Other probable causes for fatigue damage not investigated in this study are the cyclic oscillations of the total wind load associated with the vortex shedding behind the DMS cabinet at high wind conditions and fabrication tolerances and induced stresses due to fitting of tube to tube connections.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The safe use of nuclear power plants (NPPs) requires a deep understanding of the functioning of physical processes and systems involved. Studies on thermal hydraulics have been carried out in various separate effects and integral test facilities at Lappeenranta University of Technology (LUT) either to ensure the functioning of safety systems of light water reactors (LWR) or to produce validation data for the computer codes used in safety analyses of NPPs. Several examples of safety studies on thermal hydraulics of the nuclear power plants are discussed. Studies are related to the physical phenomena existing in different processes in NPPs, such as rewetting of the fuel rods, emergency core cooling (ECC), natural circulation, small break loss-of-coolant accidents (SBLOCA), non-condensable gas release and transport, and passive safety systems. Studies on both VVER and advanced light water reactor (ALWR) systems are included. The set of cases include separate effects tests for understanding and modeling a single physical phenomenon, separate effects tests to study the behavior of a NPP component or a single system, and integral tests to study the behavior of the whole system. In the studies following steps can be found, not necessarily in the same study. Experimental studies as such have provided solutions to existing design problems. Experimental data have been created to validate a single model in a computer code. Validated models are used in various transient analyses of scaled facilities or NPPs. Integral test data are used to validate the computer codes as whole, to see how the implemented models work together in a code. In the final stage test results from the facilities are transferred to the NPP scale using computer codes. Some of the experiments have confirmed the expected behavior of the system or procedure to be studied; in some experiments there have been certain unexpected phenomena that have caused changes to the original design to avoid the recognized problems. This is the main motivation for experimental studies on thermal hydraulics of the NPP safety systems. Naturally the behavior of the new system designs have to be checked with experiments, but also the existing designs, if they are applied in the conditions that differ from what they were originally designed for. New procedures for existing reactors and new safety related systems have been developed for new nuclear power plant concepts. New experiments have been continuously needed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The key parameters associated to the thermally induced spin crossover process have been calculated for a series of Fe(II) complexes with mono-, bi-, and tridentate ligands. Combination of density functional theory calculations for the geometries and for normal vibrational modes, and highly correlated wave function methods for the energies, allows us to accurately compute the entropy variation associated to the spin transition and the zero-point corrected energy difference between the low- and high-spin states. From these values, the transition temperature, T 1/2, is estimated for different compounds.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Little is known about how genetic and environmental factors contribute to the association between parental negativity and behavior problems from early childhood to adolescence. The current study fitted a cross-lagged model in a sample consisting of 4,075 twin pairs to explore (a) the role of genetic and environmental factors in the relationship between parental negativity and behavior problems from age 4 to age 12, (b) whether parent-driven and child-driven processes independently explain the association, and (c) whether there are sex differences in this relationship. Both phenotypes showed substantial genetic influence at both ages. The concurrent overlap between them was mainly accounted for by genetic factors. Causal pathways representing stability of the phenotypes and parent-driven and child-driven effects significantly and independently account for the association. Significant but slight differences were found between males and females for parent-driven effects. These results were highly similar when general cognitive ability was added as a covariate. In summary, the longitudinal association between parental negativity and behavior problems seems to be bidirectional and mainly accounted for by genetic factors. Furthermore, child-driven effects were mainly genetically mediated, and parent-driven effects were a function of both genetic and shared-environmental factors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: An evaluation and comparison is made of the thermal increment at different implant surfaces during irradiation with CO2 and ErCr:YSGG lasers. Study design: Five threaded and impacted implants with four types of surfaces were inserted in an adult pig rib: two implants with a hydroxyapatite surface (HA)(impacted and threaded, respectively), a machined titanium surface implant (TI mach), a titanium plasma spray surface implant (TPS), and a sandblasted, acid-etched surface implant (SBAE). A 0.5-mm diameter bone defect was made in the implant apical zone, and a type-K thermocouple (Termopar)® was placed in contact with the implant. The implants were irradiated in the coronal zone of each implant with a CO2 (4 W continuous mode) and an ErCr:YSGG laser (1.5 W, pulsed mode) first without and then with refrigeration. The temperature variations at the implant apical surface were recorded. Results: An apical temperature increase was recorded in all cases during CO2 and ErCr:YSGG laser irradiation without refrigeration. However, when the ErCr:YSGG was used with a water spray, a decrease in temperature was observed in all implants. The acid-etched and sandblasted surfaces were those most affected by the thermal changes. Conclusions: The ErCr:YSGG laser with a water spray applied to the sealing cap or coronal zone of the implants does not generate thermal increments in the apical surface capable of adversely affecting osseointegration and the integrity of the peri-implant bone tissue

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The question of how to quantify insufficient coping behavior under chronic stress is of major clinical relevance. In fact, chronic stress increasingly dominates modern work conditions and can affect nearly every system of the human body, as suggested by physical, cognitive, affective and behavioral symptoms. Since freshmen students experience constantly high levels of stress due to tight schedules and frequent examinations, we carried out a 3-center study of 1,303 students from Italy, Spain and Argentina in order to develop socioculturally independent means for quantifying coping behavior. The data analysis relied on 2 self-report questionnaires: the Coping Strategies Inventory (COPE) for the assessment of coping behavior and the Zurich Health Questionnaire which assesses consumption behavior and general health dimensions. A neural network approach was used to determine the structural properties inherent in the COPE instrument. Our analyses revealed 2 highly stable, socioculturally independent scales that reflected basic coping behavior in terms of the personality traits activity-passivity and defeatism-resilience. This replicated previous results based on Swiss and US-American data. The percentage of students exhibiting insufficient coping behavior was very similar across the study sites (11.5-18.0%). Given their stability and validity, the newly developed scales enable the quantification of basic coping behavior in a cost-efficient and reliable way, thus clearing the way for the early detection of subjects with insufficient coping skills under chronic stress who may be at risk of physical or mental health problems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article presents the results of a study of the efficiency of silanation process of calcium phosphate glasses particles and its effect on the bioactivity behavior of glasspoly( methyl methacrylate) (PMMA) composites. Two different calcium phosphate glasses: 44.5CaO-44.5P2O5-11Na2O (BV11) and 44.5CaO-44.5P2O5-6Na2O-5TiO2 (G5) were synthesized and treated with silane coupling agent. The glasses obtained were characterized by Microprobe and BET while the efficiency of silanation process was determined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS) and Thermal Analysis (DTA and TG)techniques. The content of coupling agent chemically tightly bond to the silanated glasses ascended to 1.69 6 0.02 wt % for BV11sil glass and 0.93 6 0.01 wt % for G5sil glass. The in vitro bioactivity test carried out in Simulated Body Fluid (SBF) revealed certain bioactive performance with the use of both silanated glasses in a 30% (by weight) as filler of the PMMA composites because of a superficial deposition of an apatite-like layer with low content of CO3 22 and HPO4 22 in its structure after soaking for 30 days occurred. VC 2013 Wiley Periodicals,Inc. J Biomed Mater Res Part B: Appl Biomater 00B: 000-000, 2013.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two food products (powders) were obtained by hot-air drying or lyophilisation methods on the whole guava fruits. The powders were characterised by sensory and thermal analyses (TGA-DSC), infrared spectroscopy (IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Thermal, morphological and structural characterisations showed a similar behaviour for the two solids. TGA-DSC and IR showed the presence of pectin as the main constituent of solids. A semi-crystalline profile was evidenced by XRD, and lamellar/spherical morphologies were observed by SEM. Sensory analyses revealed an aroma highly related to guava. These value-added food products are an alternative to process guava and avoid loss during postharvest handling.