882 resultados para Textural classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electroencephalogram (EEG) is an important noninvasive tool used in the neonatal intensive care unit (NICU) for the neurologic evaluation of the sick newborn infant. It provides an excellent assessment of at-risk newborns and formulates a prognosis for long-term neurologic outcome.The automated analysis of neonatal EEG data in the NICU can provide valuable information to the clinician facilitating medical intervention. The aim of this thesis is to develop a system for automatic classification of neonatal EEG which can be mainly divided into two parts: (1) classification of neonatal EEG seizure from nonseizure, and (2) classifying neonatal background EEG into several grades based on the severity of the injury using atomic decomposition. Atomic decomposition techniques use redundant time-frequency dictionaries for sparse signal representations or approximations. The first novel contribution of this thesis is the development of a novel time-frequency dictionary coherent with the neonatal EEG seizure states. This dictionary was able to track the time-varying nature of the EEG signal. It was shown that by using atomic decomposition and the proposed novel dictionary, the neonatal EEG transition from nonseizure to seizure states could be detected efficiently. The second novel contribution of this thesis is the development of a neonatal seizure detection algorithm using several time-frequency features from the proposed novel dictionary. It was shown that the time-frequency features obtained from the atoms in the novel dictionary improved the seizure detection accuracy when compared to that obtained from the raw EEG signal. With the assistance of a supervised multiclass SVM classifier and several timefrequency features, several methods to automatically grade EEG were explored. In summary, the novel techniques proposed in this thesis contribute to the application of advanced signal processing techniques for automatic assessment of neonatal EEG recordings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatially periodic vegetation patterns are well known in arid and semi-arid regions around the world. Mathematical models have been developed that attribute this phenomenon to a symmetry-breaking instability. Such models are based on the interplay between competitive and facilitative influences that the vegetation exerts on its own dynamics when it is constrained by arid conditions, but evidence for these predictions is still lacking. Moreover, not all models can account for the development of regularly spaced spots of bare ground in the absence of a soil prepattern. We applied Fourier analysis to high-resolution, remotely sensed data taken at either end of a 40-year interval in southern Niger. Statistical comparisons based on this textural characterization gave us broad-scale evidence that the decrease in rainfall over recent decades in the sub-Saharan Sahel has been accompanied by a detectable shift from homogeneous vegetation cover to spotted patterns marked by a spatial frequency of about 20 cycles km-1. Wood cutting and grazing by domestic animals have led to a much more marked transition in unprotected areas than in a protected reserve. Field measurements demonstrated that the dominant spatial frequency was endogenous rather than reflecting the spatial variation of any pre-existing heterogeneity in soil properties. All these results support the use of models that can account for periodic vegetation patterns without invoking substrate heterogeneity or anisotropy, and provide new elements for further developments, refinements and tests. This study underlines the potential of studying vegetation pattern properties for monitoring climatic and human impacts on the extensive fragile areas bordering hot deserts. Explicit consideration of vegetation self-patterning may also improve our understanding of vegetation and climate interactions in arid areas. © 2006 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gliomagenesis is driven by a complex network of genetic alterations and while the glioma genome has been a focus of investigation for many years; critical gaps in our knowledge of this disease remain. The identification of novel molecular biomarkers remains a focus of the greater cancer community as a method to improve the consistency and accuracy of pathological diagnosis. In addition, novel molecular biomarkers are drastically needed for the identification of targets that may ultimately result in novel therapeutics aimed at improving glioma treatment. Through the identification of new biomarkers, laboratories will focus future studies on the molecular mechanisms that underlie glioma development. Here, we report a series of genomic analyses identifying novel molecular biomarkers in multiple histopathological subtypes of glioma and refine the classification of malignant gliomas. We have completed a large scale analysis of the WHO grade II-III astrocytoma exome and report frequent mutations in the chromatin modifier, alpha thalassemia mental retardation x-linked (ATRX), isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2), and mutations in tumor protein 53 (TP53) as the most frequent genetic mutations in low grade astrocytomas. Furthermore, by analyzing the status of recurrently mutated genes in 363 brain tumors, we establish that highly recurrent gene mutational signatures are an effective tool in stratifying homogeneous patient populations into distinct groups with varying outcomes, thereby capable of predicting prognosis. Next, we have established mutations in the promoter of telomerase reverse transcriptase (TERT) as a frequent genetic event in gliomas and in tissues with low rates of self renewal. We identify TERT promoter mutations as the most frequently mutated gene in primary glioblastoma. Additionally, we show that TERT promoter mutations in combination with IDH1 and IDH2 mutations are able to delineate distinct clinical tumor cohorts and are capable of predicting median overall survival more effectively than standard histopathological diagnosis alone. Taken together, these data advance our understanding of the genetic alterations that underlie the transformation of glial cells into neoplasms and we provide novel genetic biomarkers and multi – gene mutational signatures that can be utilized to refine the classification of malignant gliomas and provide opportunity for improved diagnosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed phenotypic characterization of B cell subpopulations is of utmost importance for the diagnosis and management of humoral immunodeficiencies, as they are used for classification of common variable immunodeficiencies. Since age-specific reference values remain scarce in the literature, we analysed by flow cytometry the proportions and absolute values of total, memory, switched memory and CD21(-/low) B cells in blood samples from 168 healthy children (1 day to 18 years) with special attention to the different subpopulations of CD21(low) B cells. The percentages of total memory B cells and their subsets significantly increased up to 5-10 years. In contrast, the percentages of immature CD21(-) B cells and of immature transitional CD21(low)CD38(hi) B cells decreased progressively with age, whereas the percentage of CD21(low) CD38(low) B cells remained stable during childhood. Our data stress the importance of age-specific reference values for the correct interpretation of B cell subsets in children as a diagnostic tool in immunodeficiencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p.103-111

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p.103-111

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serial Analysis of Gene Expression (SAGE) is a relatively new method for monitoring gene expression levels and is expected to contribute significantly to the progress in cancer treatment by enabling a precise and early diagnosis. A promising application of SAGE gene expression data is classification of tumors. In this paper, we build three event models (the multivariate Bernoulli model, the multinomial model and the normalized multinomial model) for SAGE data classification. Both binary classification and multicategory classification are investigated. Experiments on two SAGE datasets show that the multivariate Bernoulli model performs well with small feature sizes, but the multinomial performs better at large feature sizes, while the normalized multinomial performs well with medium feature sizes. The multinomial achieves the highest overall accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite resins and glass-ionomer cements were introduced to dentistry in the 1960s and 1970s, respectively. Since then, there has been a series of modifications to both materials as well as the development other groups claiming intermediate characteristics between the two. The result is a confusion of materials leading to selection problems. While both materials are tooth-colored, there is a considerable difference in their properties, and it is important that each is used in the appropriate situation. Composite resin materials are esthetic and now show acceptable physical strength and wear resistance. However, they are hydrophobic, and therefore more difficult to handle in the oral environment, and cannot support ion migration. Also, the problems of gaining long-term adhesion to dentin have yet to be overcome. On the other hand, glass ionomers are water-based and therefore have the potential for ion migration, both inward and outward from the restoration, leading to a number of advantages. However, they lack the physical properties required for use in load-bearing areas. A logical classification designed to differentiate the materials was first published by McLean et al in 1994, but in the last 15 years, both types of material have undergone further research and modification. This paper is designed to bring the classification up to date so that the operator can make a suitable, evidence-based, choice when selecting a material for any given situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gel-derived CaO-SiO2 binary glasses of CaO mole fractions 0. 2, 0.3 and 0. 4 have been prepared and characterised. Pore diameter specific pore volume, skeletal density and porosity were found to increase with increasing CaO-content, whereas a concomitant decrease in specific surface area was observed. Si-29 NMR indicated that the 0.2 CaO mole fraction glass consisted of higly polymerized Q(4) and Q(3) silicate species, with some Q(2) units. With increasing CaO mole fraction, these silicate species became progressively depolymerised such that isolated SiO4 tetrahedra were detected within the 0.4 CaO glass matrix. Unusually, the glasses retained a proportion of Q(4) and Q(3) species as the CaO mole fraction was increased. All glass formulations exhibited in vitro bioactivity. The rate of hydroxyapatite precipitation followed the order 0.2 CaO > 0.4 CaO > > 0.3 CaO, an effect that is attributed to differences in the rate of dissolution of calcium from these glasses. This, in turn, appears to be dependent upon the proportion of Ca 21 participating in the formation of the glassy network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic taxonomic categorisation of 23 species of dinoflagellates was demonstrated using field-collected specimens. These dinoflagellates have been responsible for the majority of toxic and noxious phytoplankton blooms which have occurred in the coastal waters of the European Union in recent years and make severe impact on the aquaculture industry. The performance by human 'expert' ecologists/taxonomists in identifying these species was compared to that achieved by 2 artificial neural network classifiers (multilayer perceptron and radial basis function networks) and 2 other statistical techniques, k-Nearest Neighbour and Quadratic Discriminant Analysis. The neural network classifiers outperform the classical statistical techniques. Over extended trials, the human experts averaged 85% while the radial basis network achieved a best performance of 83%, the multilayer perceptron 66%, k-Nearest Neighbour 60%, and the Quadratic Discriminant Analysis 56%.