890 resultados para Terrestrial mammals
Resumo:
We review the evolution, state of the art and future lines of research on the sources, transport pathways, and sinks of particulate trace elements in urban terrestrial environments to include the atmosphere, soils, and street and indoor dusts. Such studies reveal reductions in the emissions of some elements of historical concern such as Pb, with interest consequently focusing on other toxic trace elements such as As, Cd, Hg, Zn, and Cu. While establishment of levels of these elements is important in assessing the potential impacts of human society on the urban environment, it is also necessary to apply this knowledge in conjunction with information on the toxicity of those trace elements and the degree of exposure of human receptors to an assessment of whether such contamination represents a real risk to the city’s inhabitants and therefore how this risk can be addressed.
Resumo:
In this study, the evaluation of the accuracy and performance of a light detection and ranging (LIDAR) sensor for vegetation using distance and reflection measurements aiming to detect and discriminate maize plants and weeds from soil surface was done. The study continues a previous work carried out in a maize field in Spain with a LIDAR sensor using exclusively one index, the height profile. The current system uses a combination of the two mentioned indexes. The experiment was carried out in a maize field at growth stage 12–14, at 16 different locations selected to represent the widest possible density of three weeds: Echinochloa crus-galli (L.) P.Beauv., Lamium purpureum L., Galium aparine L.and Veronica persica Poir.. A terrestrial LIDAR sensor was mounted on a tripod pointing to the inter-row area, with its horizontal axis and the field of view pointing vertically downwards to the ground, scanning a vertical plane with the potential presence of vegetation. Immediately after the LIDAR data acquisition (distances and reflection measurements), actual heights of plants were estimated using an appropriate methodology. For that purpose, digital images were taken of each sampled area. Data showed a high correlation between LIDAR measured height and actual plant heights (R 2 = 0.75). Binary logistic regression between weed presence/absence and the sensor readings (LIDAR height and reflection values) was used to validate the accuracy of the sensor. This permitted the discrimination of vegetation from the ground with an accuracy of up to 95%. In addition, a Canonical Discrimination Analysis (CDA) was able to discriminate mostly between soil and vegetation and, to a far lesser extent, between crop and weeds. The studied methodology arises as a good system for weed detection, which in combination with other principles, such as vision-based technologies, could improve the efficiency and accuracy of herbicide spraying.
Resumo:
Vector reconstruction of objects from an unstructured point cloud obtained with a LiDAR-based system (light detection and ranging) is one of the most promising methods to build three dimensional models of orchards. The cylinder fitting method for woody structure reconstruction of leafless trees from point clouds obtained with a mobile terrestrial laser scanner (MTLS) has been analysed. The advantage of this method is that it performs reconstruction in a single step. The most time consuming part of the algorithm is generation of the cylinder direction, which must be recalculated at the inclusion of each point in the cylinder. The tree skeleton is obtained at the same time as the cluster of cylinders is formed. The method does not guarantee a unique convergence and the reconstruction parameter values must be carefully chosen. A balanced processing of clusters has also been defined which has proven to be very efficient in terms of processing time by following the hierarchy of branches, predecessors and successors. The algorithm was applied to simulated MTLS of virtual orchard models and to MTLS data of real orchards. The constraints applied in the method have been reviewed to ensure better convergence and simpler use of parameters. The results obtained show a correct reconstruction of the woody structure of the trees and the algorithm runs in linear logarithmic time
Resumo:
Perhaps the most striking fact about early Cenozoic avian history some 70 million years ago was the rapid radiation of large, flightless, ground-living birds. It has been suggested that, for a time, there was active competition between these large terrestrial birds and the early mammals. Probably reflecting the above noted early start of Ratitae of the infraclass Eoaves, the presumptive sex chromosomes of their present day survivors, such as the emu and the ostrich, largely remained homomorphic. The signs of genetic differentiation between their still-homomorphic Z and W chromosomes were tested by using two marker genes (Z-linked ZOV3 and the gene for the iron-responsive element-binding protein) and one marker sequence of a part of a presumptive pseudogene (W-linked EE0.6 of the chicken). Their homologues, maintaining 71–92% identities to the chicken counterparts, were found in both the emu (Dromaius novaehollandiae) and the ostrich (Struthio camelus). Their locations were visualized on chromosome preparations by fluorescence in situ hybridization. In the case of the emu, these three marker sequences were localized on both members of the fifth pair of a female, thus revealing no sign yet of genetic differentiation between the Z and the W. The finding was the same with regard to both members of the fourth pair of male ostriches. In the female ostrich, however, the sequence of the gene for the iron-responsive element-binding protein was missing from one of the pairs, thus revealing the differentiation by a small deletion of the W from the Z.
Resumo:
Telomeres are specialized DNA/protein complexes that comprise the ends of eukaryotic chromosomes. The highly expressed Ku heterodimer, composed of 70 and 80 Kd subunits (Ku70 and Ku80), is the high-affinity DNA binding component of the DNA-dependent protein kinase. Ku is critical for nonhomologous DNA double-stranded break repair and site-specific recombination of V(D)J gene segments. Ku also plays an important role in telomere maintenance in yeast. Herein, we report, using an in vivo crosslinking method, that human and hamster telomeric DNAs specifically coimmunoprecipitate with human Ku80 after crosslinking. Localization of Ku to the telomere does not depend on the DNA-dependent protein kinase catalytic component. These findings suggest a direct link between Ku and the telomere in mammalian cells.
Resumo:
Previous studies have shown that the chloride channel gene Clc4 is X-linked and subject to X inactivation in Mus spretus, but that the same gene is autosomal in laboratory strains of mice. This exception to the conservation of linkage of the X chromosome in one of two interfertile mouse species was exploited to compare expression of Clc4 from the X chromosome to that from the autosome. Clc4 was found to be highly expressed in brain tissues of both mouse species. Quantitative analyses of species-specific expression of Clc4 in brain tissues from mice resulting from M. spretus × laboratory strain crosses, demonstrate that each autosomal locus has half the level of Clc4 expression as compared with the single active X-linked locus. In contrast expression of another chloride channel gene, Clc3, which is autosomal in both mouse species is equal between alleles in F1 animals. There is no evidence of imprinting of the Clc4 autosomal locus. These results are consistent with Ohno’s hypothesis of an evolutionary requirement for a higher expression of genes on the single active X chromosome to maintain balance with autosomal gene expression [Ohno, S. (1967) Sex Chromosomes and Sex-Linked Genes (Springer, Berlin)].
Resumo:
Predators of herbivorous animals can affect plant populations by altering herbivore density, behavior, or both. To test whether the indirect effect of predators on plants arises from density or behavioral responses in a herbivore population, we experimentally examined the dynamics of terrestrial food chains comprised of old field plants, leaf-chewing grasshoppers, and spider predators in Northeast Connecticut. To separate the effects of predators on herbivore density from the effects on herbivore behavior, we created two classes of spiders: (i) risk spiders that had their feeding mouth parts glued to render them incapable of killing prey and (ii) predator spiders that remained unmanipulated. We found that the effect of predators on plants resulted from predator-induced changes in herbivore behavior (shifts in activity time and diet selection) rather than from predator-induced changes in grasshopper density. Neither predator nor risk spiders had a significant effect on grasshopper density relative to a control. This demonstrates that the behavioral response of prey to predators can have a strong impact on the dynamics of terrestrial food chains. The results make a compelling case to examine behavioral as well as density effects in theoretical and empirical research on food chain dynamics.
Phalangeal curvature and positional behavior in extinct sloth lemurs (Primates, Palaeopropithecidae)
Resumo:
Recent paleontological discoveries in Madagascar document the existence of a diverse clade of palaeopropithecids or “sloth lemurs”: Mesopropithecus (three species), Babakotia (one species), Palaeopropithecus (three species), and Archaeoindris (one species). This mini-radiation of now extinct (“subfossil”) lemurs is most closely related to the living indrids (Indri, Propithecus, and Avahi). Whereas the extant indrids are known for their leaping acrobatics, the palaeopropithecids (except perhaps for the poorly known giant Archaeoindris) exhibit numerous skeletal design features for antipronograde or suspensory positional behaviors (e.g., high intermembral indices and mobile joints). Here we analyze the curvature of the proximal phalanges of the hands and feet. Computed as the included angle (θ), phalangeal curvature develops in response to mechanical use and is known to be correlated in primates with hand and foot function in different habitats; terrestrial species have straighter phalanges than their arboreal counterparts, and highly suspensory forms such as the orangutan possess the most curved phalanges. Sloth lemurs as a group are characterized by very curved proximal phalanges, exceeding those seen in spider monkeys and siamangs, and approaching that of orangutans. Indrids have curvatures roughly half that of sloth lemurs, and the more terrestrial, subfossil Archaeolemur possesses the least curved phalanges of all the indroids. Taken together with many other derived aspects of their postcranial anatomy, phalangeal curvature indicates that the sloth lemurs are one of the most suspensory clades of mammals ever to evolve.
Resumo:
In the Drosophila nervous system, the glial cells missing gene (gcm) is transiently expressed in glial precursors to switch their fate from the neuronal default to glia. It encodes a novel 504-amino acid protein with a nuclear localization signal. We report here that the GCM protein is a novel DNA-binding protein and that its DNA-binding activity is localized in the N-terminal 181 amino acids. It binds with high specificity to the nucleotide sequence, (A/G)CCCGCAT, which is a novel sequence among known targets of DNA-binding proteins. Eleven such GCM-binding sequences are found in the 5′ upstream region of the repo gene, whose expression in early glial cells is dependent on gcm. This suggests that the GCM protein is a transcriptional regulator directly controlling repo. We have also identified homologous genes from human and mouse whose products share a highly conserved N-terminal region with Drosophila GCM. At least one of these was shown to have DNA-binding activity similar to that of GCM. By comparing the deduced amino acid sequences of these gene products, we were able to define the “gcm motif,” an evolutionarily conserved motif with DNA-binding activity. By PCR amplification, we obtained evidence for the existence of additional gcm-motif genes in mouse as well as in Drosophila. The gcm-motif, therefore, forms a family of novel DNA-binding proteins, and may function in various aspects of cell fate determination.
Resumo:
Two independent multidisciplinary studies of climatic change during the glacial–Holocene transition (ca. 14,000–9,000 calendar yr B.P.) from Norway and Switzerland have assessed organism responses to the rapid climatic changes and made quantitative temperature reconstructions with modern calibration data sets (transfer functions). Chronology at Kråkenes, western Norway, was derived from calibration of a high-resolution series of 14C dates. Chronologies at Gerzensee and Leysin, Switzerland, were derived by comparison of δ18O in lake carbonates with the δ18O record from the Greenland Ice Core Project. Both studies demonstrate the sensitivity of terrestrial and aquatic organisms to rapid temperature changes and their value for quantitative reconstruction of the magnitudes and rates of the climatic changes. The rates in these two terrestrial records are comparable to those in Greenland ice cores, but the actual temperatures inferred apply to the terrestrial environments of the two regions.
Resumo:
The Drosophila apterous (ap) gene encodes a protein of the LIM-homeodomain family. Many transcription factors of this class have been conserved during evolution; however, the functional significance of their structural conservation is generally not known. ap is best known for its fundamental role as a dorsal selector gene required for patterning and growth of the wing, but it also has other important functions required for neuronal fasciculation, fertility, and normal viability. We isolated mouse (mLhx2) and human (hLhx2) ap orthologs, and we used transgenic animals and rescue assays to investigate the conservation of the Ap protein during evolution. We found that the human protein LHX2 is able to regulate correctly ap target genes in the fly, causes the same phenotypes as Ap when ectopically produced, and most importantly rescues ap mutant phenotypes as efficiently as the fly protein. In addition, we found striking similarities in the expression patterns of the Drosophila and murine genes. Both mLhx2 and ap are expressed in the respective nerve cords, eyes, olfactory organs, brain, and limbs. These results demonstrate the conservation of Ap protein function across phyla and argue that aspects of its expression pattern have also been conserved from a common ancestor of insects and vertebrates.
Resumo:
Fish and mammal bones from the coastal site of Cerro Azul, Peru shed light on economic specialization just before the Inca conquest of A.D. 1470. The site devoted itself to procuring anchovies and sardines in quantity for shipment to agricultural communities. These small fish were dried, stored, and eventually transported inland via caravans of pack llamas. Cerro Azul itself did not raise llamas but obtained charqui (or dried meat) as well as occasional whole adult animals from the caravans. Guinea pigs were locally raised. Some 20 species of larger fish were caught by using nets; the more prestigious varieties of these show up mainly in residential compounds occupied by elite families.
Resumo:
Paired Ig-like receptors (PIR) that can reciprocally modulate cellular activation have been described in mammals. In the present study, we searched expressed sequence tag databases for PIR relatives to identify chicken expressed sequence tags predictive of ≈25% amino acid identity to mouse PIR. Rapid amplification of cDNA ends (RACE)-PCR extension of expressed sequence-tag sequences using chicken splenic cDNA as a template yielded two distinct cDNAs, the sequence analysis of which predicted protein products with related extracellular Ig-like domains. Chicken Ig-like receptor (CHIR)-A was characterized by its transmembrane segment with a positively charged histidine residue and short cytoplasmic tail, thereby identifying CHIR-A as a candidate-activating receptor. Conversely, CHIR-B was characterized by its nonpolar transmembrane segment and cytoplasmic tail with two immunoreceptor tyrosine-based inhibitory motifs, indicating that it may serve as an inhibitory receptor. The use of CHIR amino acid sequences in a search for other PIR relatives led to the recognition of mammalian Fc receptors as distantly related genes. Comparative analyses based on amino acid sequences and three-dimensional protein structures provided molecular evidence for common ancestry of the PIR and Fc receptor gene families.
Resumo:
In mammals the retina contains photoactive molecules responsible for both vision and circadian photoresponse systems. Opsins, which are located in rods and cones, are the pigments for vision but it is not known whether they play a role in circadian regulation. A subset of retinal ganglion cells with direct projections to the suprachiasmatic nucleus (SCN) are at the origin of the retinohypothalamic tract that transmits the light signal to the master circadian clock in the SCN. However, the ganglion cells are not known to contain rhodopsin or other opsins that may function as photoreceptors. We have found that the two blue-light photoreceptors, cryptochromes 1 and 2 (CRY1 and CRY2), recently discovered in mammals are specifically expressed in the ganglion cell and inner nuclear layers of the mouse retina. In addition, CRY1 is expressed at high level in the SCN and oscillates in this tissue in a circadian manner. These data, in conjunction with the established role of CRY2 in photoperiodism in plants, lead us to propose that mammals have a vitamin A-based photopigment (opsin) for vision and a vitamin B2-based pigment (cryptochrome) for entrainment of the circadian clock.
Resumo:
The subclass Theria of Mammalia includes marsupials (infraclass Metatheria) and placentals (infraclass Eutheria). Within each group, interordinal relationships remain unclear. One limitation of many studies is incomplete ordinal representation. Here, we analyze DNA sequences for part of exon 1 of the interphotoreceptor retinoid binding protein gene, including 10 that are newly reported, for representatives of all therian orders. Among placentals, the most robust clades are Cetartiodactyla, Paenungulata, and an expanded African clade that includes paenungulates, tubulidentates, and macroscelideans. Anagalida, Archonta, Altungulata, Hyracoidea + Perissodactyla, Ungulata, and the “flying primate” hypothesis are rejected by statistical tests. Among marsupials, the most robust clade includes all orders except Didelphimorphia. The phylogenetic placement of the monito del monte and the marsupial mole remains unclear. However, the marsupial mole sequence contains three frameshift indels and numerous stop codons in all three reading frames. Given that the interphotoreceptor retinoid binding protein gene is a single-copy gene that functions in the visual cycle and that the marsupial mole is blind with degenerate eyes, this finding suggests that phenotypic degeneration of the eyes is accompanied by parallel changes at the molecular level as a result of relaxed selective constraints.