967 resultados para Terrestrial Locomotion
Resumo:
The weed, known commonly as vassourinha de botao (buttonweed), is present in several crops in northern and north-eastern Brazil. Its occurrence is common in sugarcane and soybean crops in the states of Goias, Tocantins, and Maranhao. However, there is no published information in the literature about its taxonomic classification. Thus, this research aimed to classify taxonomically this species in order to develop a classification key based on the morphological characteristics among varieties of Borreria densiflora DC., as well as to illustrate it and provide a palynological basis to classify this species as a new variety For the classification process, data from the literature, morphological characteristics, and palynological evidence were considered. In this article, we describe a new variety, B. densiflora DC. var. latifolia E.L. Cabral & Martins. The new variety possesses a terrestrial habitat and it is a simple perennial weed species. These results show the importance of an accurate identification, as well as an understanding of the evolutionary changes inherent to weeds (like intraspecific variability), breeding system, genetic potential, and ecological studies. Those factors are essential to the beginning of a long-term weed management strategy.
Resumo:
Robust and accurate regional estimates of C storage in soils are currently an important research topic because of ongoing debate about human-induced changes in the terrestrial C cycle. Widely available geoprocessing tools were applied to estimate native soil organic C (SOC) stocks of Rio Grande do Sul state in southern Brazil to a depth of 30 cm from previously sampled soil pedons under undisturbed vegetation. The study used a statewide comprehensive soil survey comprising a small-scale soil map, a climate map, and a soil pedon database. Soil organic C stocks under native vegetation were calculated with two different approaches: the Tier 1 method of the Intergovernmental Panel on Climate Change (IPCC) and a refined method based on actual field measurements derived from soil profile data. Highest SOC stocks occurred in Neossolos Quartzarenico hidromorfico (Aquents), Organossolos Tiomorficos (Hemists), Latossolos Brunos (Udox), and Vertissolos Ebanicos (Uderts) soil classes. Before human use of soils, most C was stored in the Latossolos Vermelhos (Udox) and Neossolos Regoliticos (Orthents), which occupy a large area of Rio Grande do Sul. Generally, IPCC default reference SOC stocks compared well with SOC stocks calculated from soil pedons. The total SOC stock of Rio Grande do Sul was estimated at 1510.3 Tg C (5.8 kg C m(-2)) by the IPPC method and 1597.5 +/- 363.9 Tg C (7.4 +/- 1.9 kg C m(-2)) calculated from soil pedons. The SOC digital map and SOC database developed in this study provide crucial background information for state-level contemporary assessment of C stocks and soil C sequestration programs and initiatives.
Resumo:
The minerals of the clay fraction in estuarine plains are mainly detrital being a mixture of marine and continental sediments, but can also be authigenic. Because of the importance of mangrove ecosystems in tropical estuarine areas and the relatively few existing studies of the mineralogical composition of soils in these environments, the aim of this study was to determine the mineralogical assemblage and identify potential contrasts along the coast of the State of Sao Paulo. Soils from I I mangroves distributed along the coastal plain of the State of Sao Paulo were sampled at depths of 0 to 20 and 60 to 80 cm, and samples of suspended sediments from the Ribeira do Iguape River were collected for analysis. Mineralogical analyses were performed on the clay and silt fractions by x-ray diffraction (XRD) and transmission electron microscopy, and fresh soil samples were analyzed by scanning electron microscopy-energy dispersive spectrometry and suspended sediments by XRD. The silt fraction contained quartz, feldspars, gibbsite, kaolinite, illite, and vermiculite, and the clay fraction contained smectite, kaolinite, illite, gibbsite, quartz, and feldspars. Locally, vermiculite, biotite, anatase, halloysite, and goethite may occur because of recent transport of sediments to the system. Pyrite was identified in fresh samples. The allochthonous minerals found either were terrestrial and transported by rivers or had originated from the continental platform by past transgressive events. We suggest that the neoformation of smectite and kaolinite occurs in mangrove soils. Different geomorphological settings along the Sao Paulo coast appear to regulate mineral distribution in mangrove soils.
Resumo:
Solar radiation is one of the major factors responsible for the control of fungus populations in the environment. Inactivation by UVA and UVB radiation is especially important for the control of fungi that disperse infective units through the air, including fungi such as Cryptococcus spp. that infect their vertebrate hosts by inhalation. Cryptococcus neoformans produces melanin in the presence of certain exogenous substrates such as l-3,4 dihydroxyphenylalanine and melanization may protect the fungus against biotic and abiotic environmental factors. In the present study, we investigated the effect of exposure to an UVB irradiance of 1000 mW m(-2) (biologically effective weighted irradiance) on the survival of melanized and nonmelanized cells of four strains of C. neoformans and four strains of C. laurentii. The relative survival (survival of cells exposed to radiation in relation to cells not exposed) of cells grown 2, 4, 6 or 8 days on medium with or without L-dopa was determined after exposure to UVB doses of 1.8 and 3.6 kJ m(-2). Both the irradiance spectrum and the intensities of those doses are environmentally realistic, and, in fact, occur routinely during summer months in temperate regions. Differences in tolerance to UVB radiation were observed between the C. neoformans and C. laurentii strains. The C. neoformans strains were more susceptible to UVB radiation than the C. laurentii strains. In C. neoformans, differences in tolerance to radiation were observed during development of both melanized and nonmelanized cells. For most treatments (strain, time of growth and UVB dose), there were virtually no differences in tolerances between melanized and nonmelanized cells, but when differences occurred they were smaller than those previously observed with UVC. In tests with two strains of C. laurentii, there was no difference in tolerance to UVB radiation between melanized and nonmelanized cells during 8 days of culture; and in tests with four strains for less culture time (4 days) there were no significant differences in tolerance between melanized and nonmelanized cells of any strain of this species.
Resumo:
Comparisons across multiple taxa can often clarify the histories of biogeographic regions. In particular, historic barriers to movement should affect multiple species and, thus, result in a pattern of concordant intraspecific genetic divisions among species. A striking example of such comparative phylogeography is the recent observation that populations of many small mammals and reptiles living on the Baja, California peninsula have a large genetic break between northern and southern peninsular populations. In the present study, I demonstrate that five species of near-shore fishes living on the Baja coastline of the Gulf of California share this genetic pattern. The simplest explanation for this concordant genetic division within both terrestrial and marine vertebrates is that the Baja peninsula was fragmented by a Plio-Pleistocene marine seaway and that this seaway posed a substantial barrier to movement for near-shore fishes. The genetic divisions within Gulf of California fishes also coincide with recognized biogeographic regions based on fish community composition and several environmental factors. It is likely that adaptation to regional environments and present-day oceanographic circulation limits gene exchange between biogeographic regions and helps maintain evidence of past vicariance.
Resumo:
Numerous invertebrate species form long lasting symbioses with bacteria (Buchner, 1949; Buchner, 1965). One of the most common of these bacterial symbionts is Wolbachia pipientis, which has been estimated to infect anywhere from 15–75% of all insect species (Werren et al., 1995a; West et al., 1998; Jeyaprakash and Hoy, 2000; Werren and Windsor, 2000) as well as many species of arachnids, terrestrial crustaceans and filarial nematodes (O’Neill et al., 1997a; Bandi et al., 1998). In most arthropod associations, Wolbachia act as reproductive parasites manipulating the reproduction of their hosts to enhance their own vertical transmission. There appears to be little direct fitness cost to the infected host besides the costs arising from the reproductive manipulations. However instances have been reported where Wolbachia can be either deleterious (Min and Benzer, 1997; Bouchon et al., 1998) or beneficial (Girin and Boultreau, 1995; Stolk and Stouthamer, 1995; Wade and Chang, 1995; Vavre et al., 1999b; Dedeine et al., 2001) to their hosts. Wolbachia were first described as intracellular Rickettsia-like organisms (RLOs), infecting the gonad cells of the mosquito, Culex pipiens (Hertig and Wolbach, 1924), and were later named 'Wolbachia pipientis' (Hertig, 1936). It was not until the work of Yen and Barr (Yen and Barr, 1971; Yen and Barr, 1973) that Wolbachia were implicated in causing crossing incompatibilities between different mosquito populations (Laven, 1951; Ghelelovitch, 1952). When polymerase chain reaction (PCR) diagnostics for Wolbachia became available, it became clear that this agent was both extremely widespread and also responsible for a range of different reproductive phenotypes in the different hosts it infected (O’Neill et al., 1992; Rousset et al., 1992; Stouthamer et al., 1993). The most common of these are cytoplasmic incompatibility, inducing parthenogenesis, overriding host sex-determination, and male-killing (O’Neill et al., 1997a). As of the time of this writing, more than 450 different Wolbachia strains with unique gene sequences, different phenotypes, and infecting different hosts have been deposited in GenBank and the Wolbachia host database (http://www.wolbachia.sols. uq.edu.au).
Resumo:
Intracellular bacteria of the genus Wolbachia were first discovered in mosquitoes in the 1920s. Their superficial similarity to pathogenic rickettsia initially raised interest in them as potential human pathogens. However, injection experiments with mice showed that they were non-pathogenic, and they were subsequently classified as symbionts of insects. Until the 1970s, Wolbachia was considered to infect a limited number of species of mosquitoes. It is now clear that Wolbachia is an extremely common intracellular agent of invertebrates, infecting nearly all the major groups of arthropods and other terrestrial invertebrates. Its wide host range and abundance can be attributed partly to the unusual phenotypes it exerts on the host it infects. These include the induction of parthenogenesis (the production of female offspring from unmated mothers) in certain insects, the feminization of genetic male crustaceans to functional phenotypic females, and the failure of fertilization in hosts when males and females have a different infection status (cytoplasmic incompatibility). All of these phenotypes favor maternal transmission of the intracellular Wolbachia. In the last year, Wolbachia has also been shown to be a widespread symbiont of filarial nematodes. It appears that Wolbachia is needed by the adult worm for normal fertility, indicating that Wolbachia is behaving like a classic mutualist in this case. This discovery exemplifies that the extent of the host range of Wolbachia and its associated phenotypes is still far from fully understood.
Resumo:
Second part (and conclusion) of a paper on dispersed microspores from Culm (Carboniferous) localities, mainly in Billefjorden sandstones. Macroscopic lithologic data for samples are appended. "The present study lends considerable support to the view . . . that terrestrial sequences of lower Carboniferous age may be subdivided precisely on the exclusive basis of their microspore content.
Resumo:
The Digenea is one of five major helminth assemblages represented in Australian animals. History of the study of digeneans in Australia is reviewed briefly to show that it has never been subjected to the kind of sustained study needed to reach an understanding of it. The Australian vertebrate fauna comprises over 5500 species. These have so far been shown to harbour just over 70 families, about 306 genera and 566 species of digeneans. Digeneans occur in all classes of vertebrates in Australia but are distributed very unevenly; aquatic hosts are generally most heavily infected, but many terrestrial species are also infected. Particular weaknesses in knowledge of the fauna concern the bats, cetaceans and teleosts. Another weakness is in knowledge of life-cycles; representative life-cycles are known for only about 20 of the 70 families known in Australia. Estimates of the overall size of the fauna are dependent on an understanding of sampling strategies, the heterogeneity of distribution of the fauna, and the nature of host-specificity. These subjects are reviewed briefly and an estimate of the total fauna is made. There may be as many as 6000 species of digeneans in Australia. (C) 1998 Australian Society for Parasitology. Published by Elsevier Science Ltd.
Resumo:
1, Studies of evolutionary temperature adaptation of muscle and locomotor performance in fish are reviewed with a focus on the Antarctic fauna living at subzero temperatures. 2. Only limited data are available to compare the sustained and burst swimming kinematics and performance of Antarctic, temperate and tropical species. Available data indicate that low temperatures limit maximum swimming performance and this is especially evident in fish larvae. 3, In a recent study, muscle performance in the Antarctic rock cod Notothenia coriiceps at 0 degrees C was found to be sufficient to produce maximum velocities during burst swimming that were similar to those seen in the sculpin Myoxocephalus scorpius at 10 degrees C, indicating temperature compensation of muscle and locomotor performance in the Antarctic fish. However, at 15 degrees C, sculpin produce maximum swimming velocities greater than N, coriiceps at 0 degrees C, 4, It is recommended that strict hypothesis-driven investigations using ecologically relevant measures of performance are undertaken to study temperature adaptation in Antarctic fish, Recent detailed phylogenetic analyses of the Antarctic fish fauna and their temperate relatives will allow a stronger experimental approach by helping to separate what is due to adaptation to the cold and what is due to phylogeny alone.
The N-15 natural abundance (delta N-15) of ecosystem samples reflects measures of water availability
Resumo:
We assembled a globally-derived data set for site-averaged foliar delta(15)N, the delta(15)N of whole surface mineral soil and corresponding site factors (mean annual rainfall and temperature, latitude, altitude and soil pH). The delta(15)N of whole soil was related to all of the site variables (including foliar delta(15)N) except altitude and, when regressed on latitude and rainfall, provided the best model of these data, accounting for 49% of the variation in whole soil delta(15)N. As single linear regressions, site-averaged foliar delta(15)N was more strongly related to rainfall than was whole soil delta(15)N. A smaller data set showed similar, negative correlations between whole soil delta(15)N, site-averaged foliar delta(15)N and soil moisture variations during a single growing season. The negative correlation between water availability (measured here by rainfall and temperature) and soil or plant delta(15)N fails at the landscape scale, where wet spots are delta(15)N-enriched relative to their drier surroundings. Here we present global and seasonal data, postulate a proximate mechanism for the overall relationship between water availability and ecosystem delta(15)N and, newly, a mechanism accounting for the highly delta(15)N-depleted values found in the foliage and soils of many wet/cold ecosystems. These hypotheses are complemented by documentation of the present gaps in knowledge, suggesting lines of research which will provide new insights into terrestrial N-cycling. Our conclusions are consistent with those of Austin and Vitousek (1998) that foliar (and soil) delta(15)N appear to be related to the residence time of whole ecosystem N.
Resumo:
Previous analyses of thermal acclimation of locomotor performance in amphibians have only examined the adult life history stage and indicate that the locomotor system is unable to undergo acclimatory changes to temperature. In this study, we examined the ability of tadpoles of the striped marsh frog (Limnodynastes peronii) to acclimate their locomotor system by exposing them to either 10 degrees C or 24 degrees C for 6 weeks and testing their burst swimming performance at 10, 24, and 34 degrees C. At the test temperature of 10 degrees C, maximum velocity (U-max) of the 10 degrees C-acclimated tadpoles was 47% greater and maximum acceleration (A(max)) 53% greater than the 24 degrees C-acclimated animals. At 24 degrees C, U-max was 16% greater in the 10 degrees C-acclimation group, while there was no significant difference in A(max) or the time taken to reach U-max (T-U-max). At 34 degrees C, there was no difference between the acclimation groups in either U-max or A(max), however T-U-max was 36% faster in the 24 degrees C-acclimation group. This is the first study to report an amphibian (larva or adult) possessing the capacity to compensate for cool temperatures by thermal acclimation of locomotor performance. To determine whether acclimation period affected the magnitude of the acclimatory response, we also acclimated tadpoles of L. peronii to 10 degrees C for 8 months and compared their swimming performance with tadpoles acclimated to 10 degrees C for 6 weeks. At the test temperatures of 24 degrees C and 34 degrees C, U-max and A(max) were significantly slower in the tadpoles acclimated to 10 degrees C for 8 months. At 10 degrees C, T-U-max was 40% faster in the 8-month group, while there were no differences in either U-max or A(max). Although locomotor performance was enhanced at 10 degrees C by a longer acclimation period, this was at the expense of performance at higher temperatures.
Resumo:
The mean annual litterfall at two dry woodland sites in central Queensland was 1129 kg ha(-1) for an open E. populnea F. Muell. woodland (n = 2 years), and 2318 kg ha(-1) for a woodland dominated by E. cambageana Maiden (n = 1 year). Leaves formed the largest component of total litterfall, which varied seasonally with a spring-summer maximum. Annual litterfall at these sites conformed with a pattern of decreasing litter production with declining annual rainfall, consistent with a range of eucalypt-dominated communities.
Resumo:
Many harvested marine and terrestrial populations have segments of their range protected in areas free from exploitation. Reasons for areas being protected from harvesting include conservation, tourism, research, protection of breeding grounds, stock recovery, harvest regulation, or habitat that is uneconomical to exploit. In this paper we consider the problem of optimally exploiting a single species local population that is connected by dispersing larvae to an unharvested local population. We define a spatially-explicit population dynamics model and apply dynamic optimization techniques to determine policies for harvesting the exploited patch. We then consider how reservation affects yield and spawning stock abundance when compared to policies that have not recognised the spatial structure of the metapopulation. Comparisons of harvest strategies between an exploited metapopulation with and without a harvest refuge are also made. Results show that in a 2 local population metapopulation with unidirectional larval transfer, the optimal exploitation of the harvested population should be conducted as if it were independent of the reserved population. Numerical examples suggest that relative source populations should be exploited if the objective is to maximise spawning stock abundance within a harvested metapopulation that includes a protected local population. However, this strategy can markedly reduce yield over a sink harvested reserve system and may require strict regulation for conservation goals to be realised. If exchange rates are high, results indicate that spawning stock abundance can be less in a reserve system than in a fully exploited metapopulation. In order to maximise economic gain in the reserve system, results indicate that relative sink populations should be harvested. Depending on transfer levels, loss in harvest through reservation can be minimal, and is likely to be compensated by the potential environmental and economic benefits of the reserve.