968 resultados para TIGHT-JUNCTION STRANDS
Resumo:
In this study, oral carcinoma cells were used to evaluate chloroaluminum-phthalocyanine encapsulated in liposomes as the photosensitizer agent in support of photodynamic therapy (PDT). The genotoxicity and cytotoxicity behavior of the encapsulated photosensitizer in both dark and under irradiation using the 670-nm laser were investigated with the classical trypan blue cell viability test, the acridine orange/ethidium bromide staining organelles test, micronucleus formation frequency, DNA fragmentation, and cell morphology. The cell morphology investigation was carried out using light and electronic microscopes. Our findings after PDT include reduction in cell viability (95%) associated with morphologic alterations. The neoplastic cell destruction was predominantly started by a necrotic process, according to the assay with acridine orange and ethidium bromide, and this was confirmed by electronic microscopy analysis. Neither the PDT agent nor laser irradiation alone showed cytotoxicity, genotoxicity, or even morphologic alterations. Our results reinforce the efficiency of tight-irradiated chloroaluminum-phthalocyanine in inducing a positive effect of PDT. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The chi-conopeptides MrIA and MrIB are 13-residue peptides with two disulfide bonds that inhibit human and rat norepinephrine transporter systems and are of significant interest for the design of novel drugs involved in pain treatment. In the current study we have determined the solution structure of MrIA using NMR spectroscopy. The major element of secondary structure is a hairpin with the two strands connected by an inverse gamma-turn. The residues primarily involved in activity have previously been shown to be located in the turn region (Sharpe, I. A.; Palant, E.: Schroder, C. L; Kaye, D. M.; Adams, D. I.; Alewood, P. F.; Lewis, R. J. J Biol Client 2003, 278, 40317-40323), which appears to be more flexible than the beta-strands based on disorder in the ensemble of calculated structures. Analogues of MrIA with N-terminal truncations indicate that the N-terminal residues play a role in defining a stable conformation and the native disulfide connectivity. In particular, noncovalent interactions between Val3 and Hypl2 are likely to be involved in maintaining a stable conformation. The N-terminus also affects activity, as a single N-terminal deletion introduced additional pharmacology at rat vas deferens, while deleting the first two amino acids reduced chi-conopeptide potency. This article was originally published online as an accepted preprint. The Published Online date corresponds to the preprint version. You can request a copy of the preprint by entailing the Biopolymers editorial office at biopolymers@wiley.com (c) 2005 Wiley Periodicals, Inc.
Resumo:
We describe the mechanism of ribonuclease inhibition by ribonuclease inhibitor, a protein built of leucine-rich repeats, based on the crystal structure of the complex between the inhibitor and ribonuclease A. The structure was determined by molecular replacement and refined to an R(cryst) of 19.4% at 2.5 Angstrom resolution. Ribonuclease A binds to the concave region of the inhibitor protein comprising its parallel beta-sheet and loops. The inhibitor covers the ribonuclease active site and directly contacts several active-site residues. The inhibitor only partially mimics the RNase-nucleotide interaction and does not utilize the pi phosphate-binding pocket of ribonuclease A, where a sulfate ion remains bound. The 2550 Angstrom(2) of accessible surface area buried upon complex formation may be one of the major contributors to the extremely tight association (K-i = 5.9 x 10(-14) M). The interaction is predominantly electrostatic; there is a high chemical complementarity with 18 putative hydrogen bonds and salt links, but the shape complementarity is lower than in most other protein-protein complexes. Ribonuclease inhibitor changes its conformation upon complex formation; the conformational change is unusual in that it is a plastic reorganization of the entire structure without any obvious hinge and reflects the conformational flexibility of the structure of the inhibitor. There is a good agreement between the crystal structure and other biochemical studies of the interaction. The structure suggests that the conformational flexibility of RI and an unusually large contact area that compensates for a lower degree of complementarity may be the principal reasons for the ability of RI to potently inhibit diverse ribonucleases. However, the inhibition is lost with amphibian ribonucleases that have substituted most residues corresponding to inhibitor-binding residues in RNase A, and with bovine seminal ribonuclease that prevents inhibitor binding by forming a dimer. (C) 1996 Academic Press Limited
Resumo:
OBJECTIVE: To describe the microsurgical anatomy, branches, and anatomic relationships of the posterior cerebral artery (PCA) represented in three-dimensional images. METHODS: Seventy hemispheres of 35 brain specimens were studied. They were previously injected with red silicone and fixed in 10% formalin for at least 40 days. Four of the studied specimens were frozen at -10 degrees to -15 degrees C for 14 days, and additional dissection was done with the Klingler`s fiber dissection technique at x6 to x40 magnification. Each segment of the artery was measured and photographed to obtain three-dimensional stereoscopic images. RESULTS: The PCA origin was in the interpeduncular cistern at the pontomesencephalic junction level in 23 specimens (65.7%). The PCA was divided into four segments: P1 extends from the PCA origin to its junction with the posterior communicating artery with an average length of 7.7 mm; P2 was divided into an anterior and posterior segment. The P2A segment begins at the posterior communicating artery and ends at the most lateral aspect of the cerebral peduncle, with an average length of 23.6 mm, and the P2P segment extends from the most lateral aspect of the cerebral peduncle to the posterior edge of the lateral surface of the midbrain, with an average length of 16.4 mm; P3 extends from the posterior edge of the lateral surface of the midbrain and ends at the origin of the parieto-occipital sulcus along the calcarine fissure, with an average length of 19.8 mm; and the P4 segment corresponds to the parts of the PCA that run along or inside both the parieto-occipital sulcus and the distal part of the calcarine fissure. CONCLUSIONS: To standardize the neurosurgical practice and knowledge, surgical anatomic classifications should be used uniformly and further modified according to the neurosurgical experience gathered. The PCA classification proposed intends to correlate its anatomic segments with their required microneurosurgical approaches.
Resumo:
Heterologous genes encoding proproteins, including proinsulin, generally produce mature protein when expressed in endocrine cells while unprocessed or partially processed protein is produced in non-endocrine cells. Proproteins, which are normally processed in the regulated pathway restricted to endocrine cells, do not always contain the recognition sequence for cleavage by furin, the endoprotease specific to the constitutive pathway, the principal protein processing pathway in non-endocrine cells. Human proinsulin consists of B-Chain-C-peptide-A-Chain and cleavage at the B/C and C/A junctions is required for processing. The B/C, but not the C/A junction, is recognised and cleaved in the constitutive pathway. We expressed a human proinsulin and a mutated proinsulin gene with an engineered furin recognition sequence at the C/A junction and compared the processing efficiency of the mutant and native proinsulin in Chinese Hamster Ovary cells. The processing efficiency of the mutant proinsulin was 56% relative to 0.7% for native proinsulin. However, despite similar levels of mRNA being expressed in both cell lines, the absolute levels of immunoreactive insulin, normalized against mRNA levels, were 18-fold lower in the mutant proinsulin-expressing cells. As a result, there was only a marginal increase in absolute levels of insulin produced by these cells. This unexpected finding may result from preferential degradation of insulin in non-endocrine cells which lack the protection offered by the secretory granules found in endocrine cells.
Resumo:
After massive weight loss, one of the stigmas that afflict women is the remaining deformity of the breasts which become flaccid and ptotic, with an absent or flat upper pole. The authors propose the use of a well-established mammaplasty technique to fill the upper pole, reshape the breast cone, and correct ptosis with nipple-areola complex (NAC) repositioning. A total of 16 patients were analyzed; all underwent gastroplasty between 18 and 24 months prior to mammaplasty. The mean age was 41.6 years (range = 26-62) and the mean BMI previous to the mammaplasty was 29.2 kg/m(2) (range = 24.9-38.9). The technique included a dermo-lipo glandular flap pedicled on the inframammary fold (IMF) together with a superior flap containing the NAC. All patients who underwent surgery were satisfied with the outcomes since a more aesthetic breast shape was achieved, with projection of the upper pole and correction of ptosis. Adverse events included dehiscence at the junction point of the flaps in the inframammary fold, which resolved with secondary-intention wound healing in three patients; partial necrosis of the areola in one patient; epidermolysis in one of the NACs in one patient; and infection in one of the breasts in one patient, which resolved with proper antibiotic therapy. When compared to the current mammaplasty techniques performed in formerly obese patients, this is a good surgical option because it uses tissues adjacent to the breast itself and does not require silicone prosthesis for breast augmentation. The patients reported increased self-esteem and improvement in their quality of life.
Resumo:
The Tessier no. 5 facial cleft is an extremely rare congenital malformation. Only 26 cases have been described In the English-language literature. The cleft begins In the upper lip just medial to the oral commissure, extending across the cheek as a groove ending at the junction of the middle and lateral thirds of the lower eyelid. The bone Involvement usually Includes an alveolar cleft in the premolar region, extends across the maxilla lateral to the Infraorbital nerve, up to the infraorbital rim and orbital floor. The goals of the surgical procedure Include reconstructing the lower eyelid, repositioning the lateral canthus, closure of the labiomaxillary cleft, and restoration of the skeletal continuity (including the orbital floor defect) with bone grafts. We present six patients with the Tessier no. 5 facial cleft who have been treated in our combined centers and discuss the surgical options and difficulties faced in the reconstruction of this rare and challenging craniofacial malformation. To date, we have treated six patients (two with bilateral and four with unilateral clefts). Three of the patients with unilateral clefting had an associated no. 4 cleft and one patient with a bilateral cleft had an associated no. 3 cleft. This paper represents the largest series to date documenting surgery for patients with the Tessier no. 5 facial cleft.
Resumo:
Objective. We assessed the orofacial involvement in JDM, and evaluated the possible association of gingival and mandibular mobility alterations with demographic data, periodontal indices, clinical features, muscle enzyme levels, JDM scores and treatment. Methods. Twenty-six JDM patients were studied and compared with 22 healthy controls. Orofacial evaluation included clinical features, dental and periodontal assessment, mandibular function and salivary flow. Results. The mean current age was similar in patients with JDM and controls (P > 0.05). A unique gingival alteration characterized by erythema, capillary dilation and bush-loop formation was observed only in JDM patients (61 vs 0%, P = 0.0001). The frequencies of altered mandibular mobility and reduced mouth opening were significantly higher in patients with JDM vs controls (50 vs 14%, P = 0.013; 31 vs 0%, P = 0.005). Comparison of the patients with and without gingival alteration showed that the former had lower values of median of cementoenamel junction (-0.26 vs -0.06 mm, P = 0.013) and higher gingival bleeding index (27.7 vs 14%, P = 0.046). This pattern of gingival alteration was not associated with periodontal disease [plaque index (P = 0.332) and dental attachment loss (P = 0.482)]. The medians for skin DAS and current dose of MTX were higher in JDM with gingival alteration (2.5 vs 0.5, P = 0.029; 28.7 vs 15, P = 0.012). A significant association of lower median manual muscle testing with a reduced ability to open the mouth was observed in patients with JDM than those without this alteration (79 vs 80, P = 0.002). Conclusions. The unique gingival pattern associated with cutaneous disease activity, distinct from periodontal disease, suggests that gingiva is a possible target tissue for JDM. In addition, muscle weakness may be a relevant factor for mandibular mobility.
Resumo:
H-1 NMR spectra of the thyroid hormone thyroxine recorded at low temperature and high field show splitting into two peaks of the resonance due to the H2,6 protons of the inner (tyrosyl) ring. A single resonance is observed in 600 MHz spectra at temperatures above 185 K. An analysis of the line shape as a function of temperature shows that the coalescence phenomenon is due to an exchange process with a barrier of 37 kJ mol(-1). This is identical to the barrier for coalescence of the H2',6' protons of the outer (phenolic) ring reported previously for the thyroid hormones and their analogues. It is proposed that the separate peaks at low temperature are due to resonances for H2,6 in cisoid and transoid conformers which are populated in approximately equal populations. These two peaks are averaged resonances for the individual H2 and H6 protons. Conversion of cisoid to transoid forms can occur via rotation of either the alanyl side chain or the outer ring, from one face of the inner ring to the other. It is proposed that the latter process is the one responsible for the observed coalescence phenomenon. The barrier to rotation of the alanyl side chain is greater than or equal to 37 kJ mol(-1), which is significantly larger than has previously been reported for Csp(2)-Csp(3) bonds in other Ph-CH2-X systems. The recent crystal structure of a hormone agonist bound to the ligand-binding domain of the rat thyroid hormone receptor (Wagner et al. Nature 1995, 378, 690-697) shows the transoid form to be the bound conformation. The significant energy barrier to cisoid/transoid interconversion determined in the current study combined with the tight fit of the hormone to its receptor suggests that interconversion between the forms cannot occur at the receptor site but that selection for the preferred bound form occurs from the 50% population of the transoid form in solution.
Resumo:
The dependence of currents through the cyclic nucleotide-gated (CNG) channels of mammalian olfactory receptor neurons (ORNs) on the concentration of NaCl was studied in excised inside-out patches from their dendritic knobs using the patch-clamp technique. With a saturating concentration (100 mu M) of adenosine 3', 5'-cyclic monophosphate (cAMP), the changes in the reversal potential of macroscopic currents were studied at NaCl concentrations from 25 to 300 mM. In symmetrical NaCl solutions without the addition of divalent cations, the current-voltage relations were almost linear, reversing close to O mV. When the external NaCl concentration was maintained at 150 mM and the internal concentrations were varied, the reversal potentials of the cAMP-activated currents closely followed the Na+ equilibrium potential indicating that P-Cl/P-Na approximate to 0. However, at low external NaCl concentrations (less than or equal to 100 mM) there was some significant chloride permeability. Our results further indicated that Na+ currents through these channels: (i) did not obey the independence principle; (ii) showed saturation kinetics with K(m)s in the range of 100-150 mM and (iii) displayed a lack of voltage dependence of conductance in asymmetric solutions that suggested that ion-binding sites were situated midway along the channel. Together, these characteristics indicate that the permeation properties of the olfactory CNG channels are significantly different from those of photoreceptor CNG channels.
Resumo:
Previously we found that levels of LRRC49 (leucine rich repeat containing 49; FLJ20156) transcripts were elevated in ER-positive breast tumors compared with ER-negative breast tumors. The LRRC49 gene is located on chromosome 15q23 in close proximity to the THAP10 (THAP domain containing 10) gene. These two genes have a bidirectional organization being arranged head-to-head on opposite strands, possibly sharing the same promoter region. Analysis of the promoter region of this gene pair revealed the presence of potential estrogen response elements (EREs), suggesting the potential of this promoter to be under the control of estrogen. We used quantitative real-time PCR (qPCR) to evaluate the expression of LRRC49 and THAP10 in a series of 72 primary breast tumors, and found reduced LRRC49 and THAP10 expression in 61 and 46% of the primary breast tumors analyzed, respectively. In addition, the occurrence of LRRC49/THAP10 promoter hypermethylation was examined by methylation specific PCR (MSP) in a sub-group of the breast tumors. Hypermethylation was observed in 57.5% of the breast tumors analyzed, and the levels of mRNA expression of both genes were inversely correlated with promoter hypermethylation. We investigated the effects of 17 beta-estradiol on LRRC49 and THAP10 expression in MCF-7 breast cancer cells and found both transcripts to be up-regulated 2- to 3-fold upon 17 beta-estradiol treatment. Our results show that the transcripts of LRRC49/THAP10 bidirectional gene pair are co-regulated by estrogen and that hypermethylation of the bidirectional promoter region simultaneously silences both genes. Further studies will be necessary to elucidate the role of LRRC49/THAP10 down-regulation in breast cancer.
Resumo:
The Egr proteins, Egr-1, Egr-2, Egr-3 and Egr-4, are closely related members of a subclass of immediate early gene-encoded, inducible transcription factors. They share a highly homologous DNA-binding domain which recognises an identical DNA response element. In addition, they have several less-well conserved structural features in common. As immediate early proteins, the Egr transcription factors are rapidly induced by diverse extracellular stimuli within the nervous system in a discretely controlled manner. The basal expression of the Egr proteins in the developing and adult rat brain and the induction of Egr proteins by neurotransmitter analogue stimulation, physiological mimetic and brain injury paradigms is reviewed. We review evidence indicating that Egr proteins are subject to tight differential control through diverse mechanisms at several levels of regulation. These include transcriptional, translational and posttranslational (including glycosylation, phosphorylation and redox) mechanisms and protein-protein interaction. Ultimately the differentially co-ordinated Egr response may lead to discrete effects on target gene expression. Some of the known target genes of Egr proteins and functions of the Egr proteins in different cell types are also highlighted. Future directions for research into the control and function of the different Egr proteins are also explored. (C) 1997 Elsevier Science Ltd.
Resumo:
BACKGROUND: Even though porphyria cutanea tarda is the most frequent type of porphyria, there are few studies about its cutaneous physiopathology. OBJECTIVE: To evaluate skin changes in porphyria cutanea tarda using light microscopy and direct immunofluorescence before and after treatment with chloroquine. To perform antigen immunomapping of bullae to study their level of cleavage. METHODS: Light microscopy and direct immunofluorescence of 28 patients are reported in three different phases: 23 patients with active porphyria before treatment (Phase A), 7 patients with clinical remission during treatment (Phase B), and 8 patients with biochemical remission (Phase C). Immunomapping was performed on 7 patients. RESULTS: In active porphyria, direct immunofluorescence showed homogenous and intense fluorescence on the inside and on the walls of blood vessels as well as in the dermal-epidermal junction. In clinical remission (Phase B) and biochemical remission (Phase C), the deposit of immunoglobulins was maintained, but the deposit of complement was reduced in most cases. Immunomapping revealed no standard cleavage plane. CONCLUSION: No correlation was observed between clinical response and immunoglobulin deposits. The reduction of complement favors the hypothesis that activation of the complement cascade represents an additional pathway that leads to endothelial damage.
Resumo:
The open channel diameter of Escherichia coli recombinant large-conductance mechanosensitive ion channels (MscL) was estimated using the model of Hille (Hille, B. 1968. Pharmacological modifications of the sodium channels of frog nerve. J. Gen. Physiol. 51:199-219)that relates the pore size to conductance. Based on the MscL conductance of 3.8 nS, and assumed pore lengths, a channel diameter of 34 to 46 Angstrom was calculated. To estimate the pore size experimentally, the effect of large organic ions on the conductance of MscL was examined. Poly-L-lysines (PLLs) with a diameter of 37 Angstrom or larger significantly reduced channel conductance, whereas spermine (similar to 15 Angstrom), PLL19 (similar to 25 Angstrom) and 1,1'-bis-(3-(1'-methyl-(4,4'-bipyridinium)-1-yl)-propyl)-4,4'-bipyridinium (similar to 30 Angstrom) had no effect. The smaller organic ions putrescine, cadaverine, spermine, and succinate all permeated the channel. We conclude that the open pore diameter of the MscL is similar to 40 Angstrom, indicating that the MscL has one of the largest channel pores yet described. This channel diameter is consistent with the proposed homohexameric model of the MscL.
Resumo:
Molecular epidemiological data concerning the hepatitis B virus (HBV) in Chile are not known completely. Since the HBV genotype F is the most prevalent in the country, the goal of this study was to obtain full HBV genome sequences from patients infected chronically in order to determine their subgenotypes and the occurrence of resistance-associated mutations. Twenty-one serum samples from antiviral drug-naive patients with chronic hepatitis B were subjected to full-length PCR amplification, and both strands of the whole genomes were fully sequenced. Phylogenetic analyses were performed along with reference sequences available from GenBank (n = 290). The sequences were aligned using Clustal X and edited in the SE-AL software. Bayesian phylogenetic analyses were conducted by Markov Chain Monte Carlo simulations (MCMC) for 10 million generations in order to obtain the substitution tree using BEAST. The sequences were also analyzed for the presence of primary drug resistance mutations using CodonCode Aligner Software. The phylogenetic analyses indicated that all sequences were found to be the HBV subgenotype F1b, clustered into four different groups, suggesting that diverse lineages of this subgenotype may be circulating within this population of Chilean patients. J. Med. Virol. 83: 1530-1536, 2011. (C) 2011 Wiley-Liss, Inc.