973 resultados para THERMAL ANNEALING


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study on the basis of lab data and available resources in Bangladesh, feasibility study has been carried out for pyrolysis process converting solid tire wastes into pyrolysis oils, solid char and gases. The process considered for detailed analysis was fixed-bed fire-tube heating pyrolysis reactor system. The comparative techno-economic assessment was carried out in US$ for three different sizes plants: medium commercial scale (144 tons/day), small commercial scale (36 tons/day), pilot scale (3.6 tons/day). The assessment showed that medium commercial scale plant was economically feasible, with the lowest unit production cost than small commercial and pilot scale plants for the production of crude pyrolysis oil that could be used as boiler fuel oil and for the production of upgraded liquid-products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kaolinite intercalation and its application in polymer-based functional composites have attracted great interest, both in industry and in academia fields, since they frequently exhibit remarkable improvements in materials properties compared with the virgin polymer or conventional micro and macro-composites. Also of significant interest regarding the kaolinite intercalation complex is its thermal behavior and decomposition. This is because heating treatment of intercalated kaolinite is necessary for its further application, especially in the field of plastic and rubber industry. Although intercalation of kaolinite is an old and ongoing research topic, there is a limited knowledge available on kaolinite intercalation with different reagents, the mechanism of intercalation complex formation as well as on thermal behavior and phase transition. This review attempts to summarize the most recent achievements in the thermal behavior study of kaolinite intercalation complexes obtained with the most common reagents including potassium acetate, formamide, dimethyl sulfoxide, hydrazine and urea. At the end of this paper, the further work on kaolinite intercalation complex was also proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chief challenge facing persistent robotic navigation using vision sensors is the recognition of previously visited locations under different lighting and illumination conditions. The majority of successful approaches to outdoor robot navigation use active sensors such as LIDAR, but the associated weight and power draw of these systems makes them unsuitable for widespread deployment on mobile robots. In this paper we investigate methods to combine representations for visible and long-wave infrared (LWIR) thermal images with time information to combat the time-of-day-based limitations of each sensing modality. We calculate appearance-based match likelihoods using the state-of-the-art FAB-MAP [1] algorithm to analyse loop closure detection reliability across different times of day. We present preliminary results on a dataset of 10 successive traverses of a combined urban-parkland environment, recorded in 2-hour intervals from before dawn to after dusk. Improved location recognition throughout an entire day is demonstrated using the combined system compared with methods which use visible or thermal sensing alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire safety of light gauge cold-formed steel frame (LSF) wall systems is significant to the build-ing design. Gypsum plasterboard is widely used as a fire safety material in the building industry. It contains gypsum (CaSO4.2H2O), Calcium Carbonate (CaCO3) and most importantly free and chemically bound water in its crystal structure. The dehydration of the gypsum and the decomposition of Calcium Carbonate absorb heat, which gives the gypsum plasterboard fire resistant qualities. Recently a new composite panel system was developed, where a thin insulation layer was used externally between two plasterboards to improve the fire performance of LSF walls. In this research, finite element thermal models of both the traditional LSF wall panels with cavity insulation and the new LSF composite wall panels were developed to simulate their thermal behaviour under standard and realistic design fire conditions. Suitable thermal properties of gypsum plaster-board, insulation materials and steel were used. The developed models were then validated by comparing their results with fire test results. This paper presents the details of the developed finite element models of non-load bearing LSF wall panels and the thermal analysis results. It has shown that finite element models can be used to simulate the thermal behaviour of LSF walls with varying configurations of insulations and plasterboards. The results show that the use of cavity insulation was detrimental to the fire rating of LSF walls while the use of external insulation offered superior thermal protection. Effects of real fire conditions are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, the author proposed and developed gas sensors made of nanostructured WO3 thin film by a thermal evaporation technique. This technique gives control over film thickness, grain size and purity. The device fabrication, nanostructured material synthesis, characterization and gas sensing performance have been undertaken. Three different types of nanostructured thin films, namely, pure WO3 thin films, iron-doped WO3 thin films by co-evaporation and Fe-implanted WO3 thin films have been synthesized. All the thin films have a film thickness of 300 nm. The physical, chemical and electronic properties of these films have been optimized by annealing heat treatment at 300ºC and 400ºC for 2 hours in air. Various analytical techniques were employed to characterize these films. Atomic Force Microscopy and Transmission Electron Microscopy revealed a very small grain size of the order 5-10 nm in as-deposited WO3 films, and annealing at 300ºC or 400ºC did not result in any significant change in grain size. X-ray diffraction (XRD) analysis revealed a highly amorphous structure of as-deposited films. Annealing at 300ºC for 2 hours in air did not improve crystallinity in these films. However, annealing at 400ºC for 2 hours in air significantly improved the crystallinity in pure and iron-doped WO3 thin films, whereas it only slightly improved the crystallinity of iron-implanted WO3 thin film as a result of implantation. Rutherford backscattered spectroscopy revealed an iron content of 0.5 at.% and 5.5 at.% in iron-doped and iron-implanted WO3 thin films, respectively. The RBS results have been confirmed using energy dispersive x-ray spectroscopy (EDX) during analysis of the films using transmission electron microscopy (TEM). X-ray photoelectron spectroscopy (XPS) revealed significant lowering of W 4f7/2 binding energy in all films annealed at 400ºC as compared with the as-deposited and 300ºC annealed films. Lowering of W 4f7/2 is due to increase in number of oxygen vacancies in the films and is considered highly beneficial for gas sensing. Raman analysis revealed that 400ºC annealed films except the iron-implanted film are highly crystalline with significant number of O-W-O bonds, which was consistent with the XRD results. Additionally, XRD, XPS and Raman analyses showed no evidence of secondary peaks corresponding to compounds of iron due to iron doping or implantation. This provided an understanding that iron was incorporated in the host WO3 matrix rather than as a separate dispersed compound or as catalyst on the surface. WO3 thin film based gas sensors are known to operate efficiently in the temperature range 200ºC-500 ºC. In the present study, by optimizing the physical, chemical and electronic properties through heat treatment and doping, an optimum response to H2, ethanol and CO has been achieved at a low operating temperature of 150ºC. Pure WO3 thin film annealed at 400ºC showed the highest sensitivity towards H2 at 150ºC due to its very small grain size and porosity, coupled with high number of oxygen vacancies, whereas Fe-doped WO3 film annealed at 400ºC showed the highest sensitivity to ethanol at an operating temperature of 150ºC due to its crystallinity, increased number of oxygen vacancies and higher degree of crystal distortions attributed to Fe addition. Pure WO3 films are known to be insensitive to CO, but iron-doped WO3 thin film annealed at 300ºC and 400ºC showed an optimum response to CO at an operating temperature of 150ºC. This result is attributed to lattice distortions produced in WO3 host matrix as a result of iron incorporation as substitutional impurity. However, iron-implanted WO3 thin films did not show any promising response towards the tested gases as the film structure has been damaged due to implantation, and annealing at 300ºC or 400ºC was not sufficient to induce crystallinity in these films. This study has demonstrated enhanced sensing properties of WO3 thin film sensors towards CO at lower operating temperature, which was achieved by optimizing the physical, chemical and electronic properties of the WO3 film through Fe doping and annealing. This study can be further extended to systematically investigate the effects of different Fe concentrations (0.5 at.% to 10 at.%) on the sensing performance of WO3 thin film gas sensors towards CO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study available solid tire wastes in Bangladesh were characterized through proximate and ultimate analyses, gross calorific values and thermogravimetric analysis to investigate their suitability as feedstock for thermal recycling by pyrolysis technology. A new approach in heating system, fixedbed fire-tube heating pyrolysis reactor has been designed and fabricated for the recovery of liquid hydrocarbons from solid tire wastes. The tire wastes were pyrolysed in the internally heated fixed-bed fire-tube heating reactor and maximum liquid yield of 46-55 wt% of solid tire waste was obtained at a temperature of 475 oC, feed size 4 cm3, with a residence time of 5 s under N2 atmosphere. The liquid products were characterized by physical properties, elemental analysis, FT-IR, 1H-NMR, GC MS techniques and distillation. The results show that the liquid products are comparable to petroleum fuels whereas fractional distillations and desulphurization are essential to be used as alternative for diesel engine fuels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal-infrared imagery is relatively robust to many of the failure conditions of visual and laser-based SLAM systems, such as fog, dust and smoke. The ability to use thermal-infrared video for localization is therefore highly appealing for many applications. However, operating in thermal-infrared is beyond the capacity of existing SLAM implementations. This paper presents the first known monocular SLAM system designed and tested for hand-held use in the thermal-infrared modality. The implementation includes a flexible feature detection layer able to achieve robust feature tracking in high-noise, low-texture thermal images. A novel approach for structure initialization is also presented. The system is robust to irregular motion and capable of handling the unique mechanical shutter interruptions common to thermal-infrared cameras. The evaluation demonstrates promising performance of the algorithm in several environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improving energy efficiency has become increasingly important in data centers in recent years to reduce the rapidly growing tremendous amounts of electricity consumption. The power dissipation of the physical servers is the root cause of power usage of other systems, such as cooling systems. Many efforts have been made to make data centers more energy efficient. One of them is to minimize the total power consumption of these servers in a data center through virtual machine consolidation, which is implemented by virtual machine placement. The placement problem is often modeled as a bin packing problem. Due to the NP-hard nature of the problem, heuristic solutions such as First Fit and Best Fit algorithms have been often used and have generally good results. However, their performance leaves room for further improvement. In this paper we propose a Simulated Annealing based algorithm, which aims at further improvement from any feasible placement. This is the first published attempt of using SA to solve the VM placement problem to optimize the power consumption. Experimental results show that this SA algorithm can generate better results, saving up to 25 percentage more energy than First Fit Decreasing in an acceptable time frame.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured WO3 thin films have been prepared by thermal evaporation to detect hydrogen at low temperatures. The influence of heat treatment on the physical, chemical and electronic properties of these films has been investigated. The films were annealed at 400oC for 2 hours in air. AFM and TEM analysis revealed that the as-deposited WO3 film is high amorphous and made up of cluster of particles. Annealing at 400oC for 2 hours in air resulted in very fine grain size of the order of 5 nm and porous structure. GIXRD and Raman analysis revealed that annealing improved the crystallinity of WO3 film. Gas sensors based on annealed WO3 films have shown a high response towards various concentrations (10-10000 ppm) H2 at an operating temperature of 150oC. The improved sensing performance at low operating temperature is due to the optimum physical, chemical and electronic properties achieved in the WO3 film through annealing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To examine the effect of thermal agents on the range of movement (ROM) and mechanical properties in soft tissue and to discuss their clinical relevance. DATA SOURCES: Electronic databases (Cochrane Central Register of Controlled Trials, MEDLINE, and EMBASE) were searched from their earliest available record up to May 2011 using Medical Subjects Headings and key words. We also undertook related articles searches and read reference lists of all incoming articles. STUDY SELECTION: Studies involving human participants describing the effects of thermal interventions on ROM and/or mechanical properties in soft tissue. Two reviewers independently screened studies against eligibility criteria. DATA EXTRACTION: Data were extracted independently by 2 review authors using a customized form. Methodologic quality was also assessed by 2 authors independently, using the Cochrane risk of bias tool. DATA SYNTHESIS: Thirty-six studies, comprising a total of 1301 healthy participants, satisfied the inclusion criteria. There was a high risk of bias across all studies. Meta-analyses were not undertaken because of clinical heterogeneity; however, effect sizes were calculated. There were conflicting data on the effect of cold on joint ROM, accessory joint movement, and passive stiffness. There was limited evidence to determine whether acute cold applications enhance the effects of stretching, and further evidence is required. There was evidence that heat increases ROM, and a combination of heat and stretching is more effective than stretching alone. CONCLUSIONS: Heat is an effective adjunct to developmental and therapeutic stretching techniques and should be the treatment of choice for enhancing ROM in a clinical or sporting setting. The effects of heat or ice on other important mechanical properties (eg, passive stiffness) remain equivocal and should be the focus of future study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a new approach to establish the probabilistic cable rating based on cable thermal environment studies. Knowledge of cable parameters has been well established. However the environment in which the cables are buried is not so well understood. Research in Queensland University of Technology has been aimed at obtaining and analysing actual daily field values of thermal resistivity and diffusivity of the soil around power cables. On-line monitoring systems have been developed and installed with a data logger system and buried spheres that use an improved technique to measure thermal resistivity and diffusivity over a short period. Based on the long-term continuous field data for more than 4 years, a probabilistic approach is developed to establish the correlation between the measured field thermal resistivity values and rainfall data from weather bureau records. Hence, a probabilistic cable rating can be established based on monthly probabilistic distribution of thermal resistivity