937 resultados para TETRARUTHENATED NICKEL PORPHYRIN
Resumo:
UV-LIGA is a versatile technique which allows the fabrication of metal parts with high aspect ratio (height / width) through the combination of a photolithographic processing of a polymer and the electroforming of a metal inside the cavities engraved in the polymer. This low-cost technique is used in a variety of areas including microfluidic, optics, instrumentation, plastic molding and telecommunications, among others. To approximate Colombia to this modern technologies for materials processing, the Materials Science and Technology Group has started an appropriation process of microfabrication techniques, specifically, this paper presents the results of UV-LIGA technique implementation for the fabrication of Nickel microparts, and examine the effects of mold geometry on the growing speed and integrity of the obtained deposits, important parameters in order to achieve the fabrication of complex micrometric parts that leads to devices with commercial applications.
Resumo:
We demonstrate anisotropic etching of single-layer graphene by thermally activated nickel nanoparticles. Using this technique, we obtain sub-10-nm nanoribbons and other graphene nanostructures with edges aligned along a single crystallographic direction. We observe a new catalytic channeling behavior, whereby etched cuts do not intersect, resulting in continuously connected geometries. Raman spectroscopy and electronic measurements show that the quality of the graphene is resilient under the etching conditions, indicating that this method may serve as a powerful technique to produce graphene nanocircuits with well-defined crystallographic edges.
Resumo:
Protoporphyrin IX (PpIX) is a porphyrin derivative that is accumulated in cancerous tissue in consequence of the tumor-specific metabolic alterations. The aim of this study was to evaluate the accumulation of PpIX in mice bearing renal cell carcinoma by spectroscopy analysis. A total of 24 male Balb/c mice, 6 weeks old, were divided into six groups: Normal (without inoculation of tumor cells) and 4, 8, 13, 16, and 20 days after inoculation of tumor cells. The orthotopic tumor model of renal cancer was used. Murine renal cell carcinoma (Renca cells) were inoculated into the subcapsular space of the kidney. Normal and tumor-bearing kidneys in different progression stages were removed and analyzed by ex-vivo spectroscopy and by microscopy, for tumor histometric analysis. Emission spectra were obtained by exciting the samples at 405 nm. Significant differences between normal and tumor-bearing kidneys in autofluorescence shape occurred in the 600-700 nm spectral region. A good correlation was found between emission band intensity at 635 nm and the tumor area.
Resumo:
Adsorption of Ni(2+), Zn(2+) or Pb(2+) by dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris was studied as a function of contact time and initial metal concentration. The zero point of charge calculated for these biosorbents (pH(zpc) 4.0 and 3.4, respectively) and additional pH tests suggested the use of pH in the range 5.0-5.5 for the experiments. The equilibrium isotherms were evaluated in terms of maximum sorption capacity and sorption affinity. The pseudo first and second order kinetic models were considered to interpret the experimental data, and the latter best described the adsorption system. Both the Freundlich and Langmuir models were shown to well describe the sorption isotherms, thus suggesting an intermediate mono/multilayer sorption mechanism. Compared to A. platensis (q(e) = 0.354, 0.495 and 0.508 mmol g(-1) for Ni(2+), Pb(2)+ and Zn(2+), respectively), C. vulgaris behaved as a better biosorbent because of higher equilibrium sorption capacity (q(e) = 0.499, 0.634 and 0.664 mmol g(-1), respectively). The removal efficiency decreased with increasing metal concentration, pointing out a passive adsorption process involving the active sites on the surface of the biomasses. The FT-IR spectroscopy evidenced that ions removal occurred mainly by interaction between metal and carboxylate groups present on both the cell walls. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Meso-tetra-(N-methylpiridinium-4-yl)-porphyrin (TMPyP) and meso-tetra-(4-sulfonatophenyl)-porphyrin (TPPS(4)) are photosensitizing drugs (PS) used in photodynamic therapy (PDT). Based on the fact that these compounds present similar chemical structures but opposite charges at pH levels near physiological conditions, this work aims to evaluate the in vitro and in vivo influence of these electrical charges on the iontophoretic delivery of TMPyP and TPPS4, attempting to achieve maximum accumulation of PS in skin tissue. The iontophoretic transport of these drugs from a hydrophilic gel was investigated in vitro using porcine ear skin and vertical, flow-through diffusion cells. In vivo experiments using rats were also carried out, and the penetration of the PSs was analyzed by fluorescence microscopy to visualize the manner of how these compounds were distributed in the skin after a short period of iontophoresis application. In vitro, both passive and iontophoretic delivery of the positively charged TMPyP were much greater (20-fold and 67-fold, respectively) than those of the negatively charged TPPS(4). TPPS(4) iontophoresis in vivo increased the fluorescence of the skin only in the very superficial layers. On the other hand, iontophoresis of the positively charged drug expressively increased the rat epidermis and dermis fluorescence, indicating high amounts of this drug throughout the skin layers. Moreover, TMPyP was homogeneously distributed around and into the nuclei of the skin cells, suggesting its potential use in topical PDT. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A catalytic system consisting of iron tetraphenylporphyrin supported on an alumina matrix for oxidation of (-)-cubebin with iodosylbenzene or hydrogen peroxide is reported. Conversion of (-)-cubebin is very efficient (100%) with 100% selectivity producing only (-)-hinokinin when iodosylbenzene is used as the oxidant and 70% conversion with 100% selectivity when hydrogen peroxide is the oxidant at room temperature under atmospheric pressure. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Catalytic activities and deactivation characteristics of oxides-supported nickel catalysts for the reaction of methane reforming with carbon dioxide were investigated. The dynamic carbon deposition on various nickel catalysts was also studied by a thermogravimetric method. Among the catalysts prepared, Ni/La2O3, Ni/alpha-Al2O3, Ni/SiO2, and Ni/CeO2 showed very high CH4 and CO2 conversions and moderate deactivation whereas Ni/MgO and Ni/TiO2 had lower conversions when the Ni reduction was conducted at 500 degrees C. When Ni/MgO catalyst was reduced at 800 degrees C, it exhibited not only comparable conversions of CH4 and CO2 with other active catalysts but also much longer period of stability without deactivation. The amount of carbon deposited in Ni-based catalysts varied depending on the nature of support and followed the order of Ni/La2O3 > Ni/alpha-Al2O3 > Ni/SiO2 > Ni/MgO > Ni/CeO2 at 700 degrees C. The carbons formed on the catalyst surface showed different structural and chemical properties, and these in turn affected the catalytic activity of the catalysts.
Resumo:
Reaction of bis(ethane-1,2-diamine)copper(II) with acetaldehyde and nitromethane in methanol leads, stereoselectively, to the new macrocyclic complex (trans-5(R),7(R),12(S),14(S))-tetramethyl-6,13-dinitro-1,4,8,11-tetraazacyclotetradecane)copper(II) perchlorate alpha-[CuL1](ClO4)(2) in good yield. Reduction of the nitro groups affords the hexaamine (L-2), which was crystallized as [H4L2](ClO4)(4) . 2H(2)O and characterized by an X-ray crystal structure study (monoclinic P2(1)/n, a = 9.763(2) Angstrom, b = 12.1988(7) Angstrom, c = 13.036(2) Angstrom, beta = 105.668(7)degrees, Z = 2) and complexed with Cu-II to produce the complex beta-[Cu(H2L2)](ClO4)(4) . 2H(2)O, which has also been characterized by X-ray crystallography (monoclinic P2(1)/n, a = 9.717(4) Angstrom, b = 12.174(2) Angstrom, c = 13.036(5) Angstrom, beta = 106.51(2)degrees, Z = 2). Reaction of alpha-[CuL1](2+) with either basic hydrogen peroxide or dilute nitrous acid leads to mild reduction of the nitro groups to afford the ketoxime L-3 as its N-based isomeric Cu-II complexes, trans-I [CuL3](ClO4)(2) and trans-II [Cu(L-3)Cl]Cl . 7H(2)O, the latter of which has been characterized structurally: triclinic, <P(1)over bar> a = 10.8441(5) Angstrom, b = 11.6632(9) Angstrom, c = 11.8723(9) Angstrom, alpha = 113.634(7)degrees, beta = 95.744(5), gamma = 94.851(5)degrees Z = 2. Variations in the configurations of the coordinated amines in [CuL1](2+), [CuL2](2+), and [CuL3](2+) have a profound effect on the spectroscopy and electrochemistry of their complexes.
Resumo:
The effects of the support phase and catalyst preparation methods on catalytic activity and carbon deposition were systematically investigated over nickel catalysts supported on Al2O3, SiO2 and MgO for the reforming reaction of methane with carbon dioxide. It is found that the pore structure of the support and metal-support interaction significantly affected the catalytic activity and coking resistance. Catalyst with well-developed porosity exhibited higher catalytic activity. Strong interaction between metal and the support made the catalyst more resistant to sintering and coking, thus resulting in a longer time of catalyst stability. (C) 1998 Elsevier Science B.V.
Resumo:
Activated carbon as catalyst support was treated with HCl, HNO3, and HF and the effects of acid treatments on the properties of the activated carbon support were studied by N-2 adsorption, mass titration, temperature-programmed desorption (TPD), and X-ray photoelectron spectrometry (XPS). Ni catalysts supported on untreated and treated activated carbons were prepared, characterized and tested for the reforming reaction of methane with carbon dioxide. It is found that acid treatment significantly changed the surface chemical properties and pore structure of the activated carbon. The surface area and pore volume of the carbon supports are generally enhanced upon acid treatment due to the removal of impurities present in the carbon. The adsorption capacity of Ni2+ on the carbon supports is also increased, and the increase can be closely correlated with the surface acidity. The impregnation of nickel salts decreases the surface area and pore volume of carbon supports both in micropores and mesopores. Acid treatment results in a more homogeneous distribution of the nickel salt in carbon. When the impregnated carbons are heated in inert atmosphere, there exists a redox reaction between nickel oxide and the carbon. Catalytic activity tests for methane reforming with carbon dioxide show that the activity of nickel catalysts based on the acid-treated carbon supports is closely related with the surface characteristics of catalysts. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A hydride cold-trapping technique was developed and optimised for the measurement of urinary arsenic metabolites. The analytical precision of the method was found to be 6.1, 4.0 and 4.8% (n = 5) for inorganic arsenic (As-i), monomethylarsonate (MMA) and dimethylarsinate (DMA), respectively, with recoveries close to 100%, The detection limits were 1.0, 1.3 and 3 ng for As-i, MMA and DMA, respectively. The method was then used to analyse urine samples obtained from three groups of workers for occupational exposure in three companies where copper chrome arsenate was used for timber treatment. The results were compared with those for a normal control group of laboratory workers. Arsenic and its metabolites were also measured in experimental rats given 5 mg As kg(-1) body mass by oral gavage in the form of sodium arsenite, calcium arsenite or sodium arsenate. Occupational workers showed a significantly higher excretion of As-i, Up to two fold increases of urinary As-i excretion in rats compared with control rats were also observed in animals dosed with various forms of arsenicals. The method is suitable for the measurement of arsenic metabolites in urine of both humans and experimental animals.
Resumo:
The macrocyclic compounds (6-(4',6'-diamino-1',3',5'-triazinyl)-1,4,6,8,11-pentaazacyclotetradecane)copper(II) triperchlorate dihydrate, [Cu(HL2)](ClO4)(3). 2H(2)O, (6-(6'-amino-4'-oxo-1'H-1',3',5'-triazinyl)-1,4,6,8,11-pentaazacyclotetradecane)copper(II) diperchlorate hydrate, [CuL3](ClO4)(2). H2O, and [(6-(4',6'-dioxo-1'H-1',3',5'-triazinyl) 1,4,6,8,11-pentaazacyclotetradecane)copper(II)] diperchlorate, [CuL4](ClO4)(2), have been synthesized. The macrocycles synthesized contain respectively pendant melamine, ammeline,and ammelide rings. The X-ray cyrstallographic analyses of [Cu(HL2)](ClO4)(3). 2H(2)O, triclinic, space group P (1) over bar, a = 9.489(10) Angstrom, b = 12.340(2) Angstrom, c = 24.496(4) Angstrom, alpha = 87.74(10)degrees beta = 85.51(10)degrees gamma = 70.95(10)degrees and Z = 4, and {[CuL3](ClO4)(2). H2O}2, monoclinic, space group C2/c, a = 18.624(8) Angstrom, b = 17.160(2) Angstrom, c = 15.998(6) Angstrom, beta = 117.82(2)degrees, and Z = 4, are reported. The structure of [Cu(HL2)](ClO4)(3). 2H(2)O shows the formation of linear tapes, formed by a combination of hydrogen bonds and pi-pi stacking interactions. The structure of [CuL3](ClO4)(2). H2O displays formation of dimers, formed by a coordinate bond from the oxygen in one molecule to the copper atom of another. The tautomeric forms of the ammeline and ammelide moieties have been determined. The potential of these compounds as subunits for cocrystallization has been investigated.
Resumo:
Carbon formation on Ni/gamma-Al2O3 catalysts and its kinetics during methane reforming with carbon dioxide was studied in the temperature range of 500-700 degrees C using a thermogravimetric analysis technique. The activation energies of methane cracking, carbon gasification in CO2, as well as carbon deposition in CO2-CH4 reforming were obtained. The results show that the activation energy for carbon gasification is larger than that of carbon formation in methane cracking and that the activation energy of coking in CO2-CH4 reforming is also larger than that of methane decomposition to carbon. The dependencies of coking rate on partial pressures of CH4 and CO2 indicate that methane decomposition is the main route for carbon deposition. A mechanism and kinetic model for carbon deposition is proposed.
Resumo:
A trinuclear macrocyclic complex is reported from the metal directed condensation between melamine, formaldehyde and the Cu-II complex of a linear tetraamine.