983 resultados para Synaptonemal complex failure
Resumo:
It has been shown that in reality at least two general scenarios of data structuring are possible: (a) a self-similar (SS) scenario when the measured data form an SS structure and (b) a quasi-periodic (QP) scenario when the repeated (strongly correlated) data form random sequences that are almost periodic with respect to each other. In the second case it becomes possible to describe their behavior and express a part of their randomness quantitatively in terms of the deterministic amplitude–frequency response belonging to the generalized Prony spectrum. This possibility allows us to re-examine the conventional concept of measurements and opens a new way for the description of a wide set of different data. In particular, it concerns different complex systems when the ‘best-fit’ model pretending to be the description of the data measured is absent but the barest necessity of description of these data in terms of the reduced number of quantitative parameters exists. The possibilities of the proposed approach and detection algorithm of the QP processes were demonstrated on actual data: spectroscopic data recorded for pure water and acoustic data for a test hole. The suggested methodology allows revising the accepted classification of different incommensurable and self-affine spatial structures and finding accurate interpretation of the generalized Prony spectroscopy that includes the Fourier spectroscopy as a partial case.
Resumo:
This paper presents a novel method for the analysis of nonlinear financial and economic systems. The modeling approach integrates the classical concepts of state space representation and time series regression. The analytical and numerical scheme leads to a parameter space representation that constitutes a valid alternative to represent the dynamical behavior. The results reveal that business cycles can be clearly revealed, while the noise effects common in financial indices can elegantly be filtered out of the results.
Resumo:
This paper studies a discrete dynamical system of interacting particles that evolve by interacting among them. The computational model is an abstraction of the natural world, and real systems can range from the huge cosmological scale down to the scale of biological cell, or even molecules. Different conditions for the system evolution are tested. The emerging patterns are analysed by means of fractal dimension and entropy measures. It is observed that the population of particles evolves towards geometrical objects with a fractal nature. Moreover, the time signature of the entropy can be interpreted at the light of complex dynamical systems.
Resumo:
This paper studies the optimization of complex-order algorithms for the discrete-time control of linear and nonlinear systems. The fundamentals of fractional systems and genetic algorithms are introduced. Based on these concepts, complexorder control schemes and their implementation are evaluated in the perspective of evolutionary optimization. The results demonstrate not only that complex-order derivatives constitute a valuable alternative for deriving control algorithms, but also the feasibility of the adopted optimization strategy.
Resumo:
Chromian spinels are common in the late Cretaceous alkali basalts of the Lisbon volcanic Complex in Portugal. They occur as unzoned inclusions in magnesian olivines of all basalt types and as large spectacularly zoned grains in the groundmass of porphyritic basalts. Microprobe analysis indicate complex cationic exchange in the groundmass zoned spinels due to simple peritectic reactions and in response to changing composition of the basalt liquid. The variation of cationic distribution in zoned chromian-Spinels, reflects very accurately the changing chemistry of the cooling silicate melt and the paragenetical relations of mineral oxides and silicates. Crystallization of initial chromian spinels occurred at T~1200°C and fO2~10-8.5 atm. earlier or contemporaneously with magnesian olivine. The titanomagnetite mantles of zoned chromian spinels crystallized at T~1200°C and much lower fO2.
Resumo:
The National Cancer Institute (NCI) method allows the distributions of usual intake of nutrients and foods to be estimated. This method can be used in complex surveys. However, the user must perform additional calculations, such as balanced repeated replication (BRR), in order to obtain standard errors and confidence intervals for the percentiles and mean from the distribution of usual intake. The objective is to highlight adaptations of the NCI method using data from the National Dietary Survey. The application of the NCI method was exemplified analyzing the total energy (kcal) and fruit (g) intake, comparing estimations of mean and standard deviation that were based on the complex design of the Brazilian survey with those assuming simple random sample. Although means point estimates were similar, estimates of standard error using the complex design increased by up to 60% compared to simple random sample. Thus, for valid estimates of food and energy intake for the population, all of the sampling characteristics of the surveys should be taken into account because when these characteristics are neglected, statistical analysis may produce underestimated standard errors that would compromise the results and the conclusions of the survey.
Resumo:
FEBS Letters 579 (2005) 4585–4590
Resumo:
J Biol Inorg Chem (2003) 8: 777–786
Resumo:
Purpose: To assess image quality using PGMI (perfect, good, moderate, inadequate) scale in digital mammography examinations acquired in DR systems. Identify the main failures and propose corrective actions. Evaluate the most typical breast density. Methods and Materials: Clinical image quality criteria were evaluated considering mammograms acquired in 13 DR systems and classified according to PGMI scale using the criteria described in European Commission guidelines for radiographers. The breast density was assessed according to ACR recommendations. The data were collected on the acquisition system monitor to reproduce the daily practice of the radiographer. Results: The image quality criteria were evaluated in 3044 images. The criteria were fully achieved in 41% of the images that were classified as P (perfect), 31 % of the images were classified as M (moderate), 20% G (good) and 9% I (inadequate). The main cause of inadequate image quality was absence of all breast tissue in the image, skin folders in the pectoral muscle and in the infra-mammary angle. The higher number of failures occurred in MLO projections (809 out of 1022). The most represented (36%) breast type was type 2 (25-50% glandular tissue). Conclusion: Incorrect radiographic technique was frequently detected suggesting potential training needs and poor communication between the team members (radiographer and radiologists). Further correlations are necessary to identify the main causes for the failures, namely specific education and training in digital mammography and workload.
Resumo:
With the current complexity of communication protocols, implementing its layers totally in the kernel of the operating system is too cumbersome, and it does not allow use of the capabilities only available in user space processes. However, building protocols as user space processes must not impair the responsiveness of the communication. Therefore, in this paper we present a layer of a communication protocol, which, due to its complexity, was implemented in a user space process. Lower layers of the protocol are, for responsiveness issues, implemented in the kernel. This protocol was developed to support large-scale power-line communication (PLC) with timing requirements.
Resumo:
Wind resource evaluation in two sites located in Portugal was performed using the mesoscale modelling system Weather Research and Forecasting (WRF) and the wind resource analysis tool commonly used within the wind power industry, the Wind Atlas Analysis and Application Program (WAsP) microscale model. Wind measurement campaigns were conducted in the selected sites, allowing for a comparison between in situ measurements and simulated wind, in terms of flow characteristics and energy yields estimates. Three different methodologies were tested, aiming to provide an overview of the benefits and limitations of these methodologies for wind resource estimation. In the first methodology the mesoscale model acts like “virtual” wind measuring stations, where wind data was computed by WRF for both sites and inserted directly as input in WAsP. In the second approach, the same procedure was followed but here the terrain influences induced by the mesoscale model low resolution terrain data were removed from the simulated wind data. In the third methodology, the simulated wind data is extracted at the top of the planetary boundary layer height for both sites, aiming to assess if the use of geostrophic winds (which, by definition, are not influenced by the local terrain) can bring any improvement in the models performance. The obtained results for the abovementioned methodologies were compared with those resulting from in situ measurements, in terms of mean wind speed, Weibull probability density function parameters and production estimates, considering the installation of one wind turbine in each site. Results showed that the second tested approach is the one that produces values closest to the measured ones, and fairly acceptable deviations were found using this coupling technique in terms of estimated annual production. However, mesoscale output should not be used directly in wind farm sitting projects, mainly due to the mesoscale model terrain data poor resolution. Instead, the use of mesoscale output in microscale models should be seen as a valid alternative to in situ data mainly for preliminary wind resource assessments, although the application of mesoscale and microscale coupling in areas with complex topography should be done with extreme caution.
Resumo:
Mestrado em Engenharia Civil - Ramo Tecnologia e gestão das Construções
Resumo:
In this paper we consider a complex-order forced van der Pol oscillator. The complex derivative Dα1jβ, with α, β ∈ ℝ+, is a generalization of the concept of an integer derivative, where α = 1, β = 0. The Fourier transforms of the periodic solutions of the complex-order forced van der Pol oscillator are computed for various values of parameters such as frequency ω and amplitude b of the external forcing, the damping μ, and parameters α and β. Moreover, we consider two cases: (i) b = 1, μ = {1.0, 5.0, 10.0}, and ω = {0.5, 2.46, 5.0, 20.0}; (ii) ω = 20.0, μ = {1.0, 5.0, 10.0}, and b = {1.0, 5.0, 10.0}. We verified that most of the signal energy is concentrated in the fundamental harmonic ω0. We also observed that the fundamental frequency of the oscillations ω0 varies with α and μ. For the range of tested values, the numerical fitting led to logarithmic approximations for system (7) in the two cases (i) and (ii). In conclusion, we verify that by varying the parameter values α and β of the complex-order derivative in expression (7), we accomplished a very effective way of perturbing the dynamical behavior of the forced van der Pol oscillator, which is no longer limited to parameters b and ω.
Resumo:
In this paper a complex-order van der Pol oscillator is considered. The complex derivative Dα±ȷβ , with α,β∈R + is a generalization of the concept of integer derivative, where α=1, β=0. By applying the concept of complex derivative, we obtain a high-dimensional parameter space. Amplitude and period values of the periodic solutions of the two versions of the complex-order van der Pol oscillator are studied for variation of these parameters. Fourier transforms of the periodic solutions of the two oscillators are also analyzed.
Resumo:
Animal locomotion is a complex process, involving the central pattern generators (neural networks, located in the spinal cord, that produce rhythmic patterns), the brainstem command systems, the steering and posture control systems and the top layer structures that decide which motor primitive is activated at a given time. Pinto and Golubitsky studied an integer CPG model for legs rhythms in bipeds. It is a four-coupled identical oscillators' network with dihedral symmetry. This paper considers a new complex order central pattern generator (CPG) model for locomotion in bipeds. A complex derivative Dα±jβ, with α, β ∈ ℜ+, j = √-1, is a generalization of the concept of an integer derivative, where α = 1, β = 0. Parameter regions where periodic solutions, identified with legs' rhythms in bipeds, occur, are analyzed. Also observed is the variation of the amplitude and period of periodic solutions with the complex order derivative.