970 resultados para Structural Complexity
Resumo:
Kiwi (Apteryx spp.) have a visual system unlike that of other nocturnal birds, and have specializations to their auditory, olfactory and tactile systems. Eye size, binocular visual fields and visual brain centers in kiwi are proportionally the smallest yet recorded among birds. Given the many unique features of the kiwi visual system, we examined the laminar organization of the kiwi retina to determine if they evolved increased light sensitivity with a shift to a nocturnal niche or if they retained features of their diurnal ancestor. The laminar organization of the kiwi retina was consistent with an ability to detect low light levels similar to that of other nocturnal species. In particular, the retina appeared to have a high proportion of rod photoreceptors compared to diurnal species, as evidenced by a thick outer nuclear layer, and also numerous thin photoreceptor segments intercalated among the conical shaped cone photoreceptor inner segments. Therefore, the retinal structure of kiwi was consistent with increased light sensitivity, although other features of the visual system, such as eye size, suggest a reduced reliance on vision. The unique combination of a nocturnal retina and smaller than expected eye size, binocular visual fields and brain regions make the kiwi visual system unlike that of any bird examined to date. Whether these features of their visual system are an evolutionary design that meets their specific visual needs or are a remnant of a kiwi ancestor that relied more heavily on vision is yet to be determined.
Resumo:
Structural damage detection using measured dynamic data for pattern recognition is a promising approach. These pattern recognition techniques utilize artificial neural networks and genetic algorithm to match pattern features. In this study, an artificial neural network–based damage detection method using frequency response functions is presented, which can effectively detect nonlinear damages for a given level of excitation. The main objective of this article is to present a feasible method for structural vibration–based health monitoring, which reduces the dimension of the initial frequency response function data and transforms it into new damage indices and employs artificial neural network method for detecting different levels of nonlinearity using recognized damage patterns from the proposed algorithm. Experimental data of the three-story bookshelf structure at Los Alamos National Laboratory are used to validate the proposed method. Results showed that the levels of nonlinear damages can be identified precisely by the developed artificial neural networks. Moreover, it is identified that artificial neural networks trained with summation frequency response functions give higher precise damage detection results compared to the accuracy of artificial neural networks trained with individual frequency response functions. The proposed method is therefore a promising tool for structural assessment in a real structure because it shows reliable results with experimental data for nonlinear damage detection which renders the frequency response function–based method convenient for structural health monitoring.
Resumo:
Engineering students are best able to understand theory when one explains it in relation to realistic problems and its practical applications. Teaching theory in isolation has led to lower levels of comprehension and motivation and a correspondingly higher rate of failure. At Queensland University of Technology, a number of new methods have been introduced recently to improve the teaching and learning of steel structural design at undergradt1ate level. In the basic steel structures subject a project-based teaching method was introduced in which the students were required to analyse, design and build the lightest I most efficient steel columns for a given target capacity. A design assignment involving simple, but real structures was also introduced in the basic steel structures subject. Both these exercises simulated realistic engineering problems from the early years of the course and produced a range of benefits. Improvements to the teaching and learning was also made through integration of a number of related structural engineering subjects and by the introduction of animated computer models and laboratory models. This paper presents the details of all these innovative methods which improved greatly the students' understanding of the steel structures design process.
Resumo:
This chapter takes as its central premise the human capacity to adapt to changing environments. It is an idea that is central to complexity theory but receives only modest attention in relation to learning. To do this we will draw from a range of fields and then consider some recent research in motor control that may extend the discussion in ways not yet considered, but that will build on advances already made within pedagogy and motor control synergies. Recent work in motor control indicates that humans have far greater capacity to adapt to the ‘product space’ than was previously thought, mainly through fast heuristics and on-line corrections. These are changes that can be made in real (movement) time and are facilitated by what are referred to as ‘feed-forward’ mechanisms that take advantage of ultra-fast ways of recognizing the likely outcomes of our movements and using this as a source of feedback. We conclude by discussing some possible ideas for pedagogy within the sport and physical activity domains, the implications of which would require a rethink on how motor skill learning opportunities might best be facilitated.
Resumo:
Introduction to Youth Services is a second year Social Work and Human Services unit. In this unit a reflective writing task was introduced to assess students’ reflections on an ongoing tutorial discussion to which they contributed. The discussion was based on a fictional young person each tutorial group ‘worked with’ across eight weeks of a semester. In developing the process and the criteria for the reflective journal, the ideas raised by the Teaching and Assessing Reflective Learning (TARL) in Higher Education project (see Chap. 2) were utilised, scaffolding the work with resources and submission of a draft. The students were also invited to choose the form of reflective process they used, it could be a written journal but did not need to be. The evidence exemplified that a reflective journal is an effective tool for students to record their developing understanding regarding the concept that issues people experience are complex and compounding. Importantly, it was also a useful vehicle for students to begin to consider the impacts of their own and others’ values and beliefs on their response to the issues raised within the case discussion. The reflective journal also helped participants to consider how this learning contributes to the ongoing development of their professional practice framework.
Resumo:
This thesis resolved the structural ambiguity surrounding ammonium and hydronium ions in the jarosite mineral group. The vibrational spectra of these two minerals were rationalised with their crystal structures for the first time. In doing so, a theory for dealing with orientational disorder in crystals was proposed.
Resumo:
This study evaluated the complexity of calcium ion exchange with sodium exchanged weak acid cation resin (DOW MAC-3). Exchange equilibria recorded for a range of different solution normalities revealed profiles which were represented by conventional “L” or “H” type isotherms at low values of equilibrium concentration (Ce) of calcium ions, plus a superimposed region of increasing calcium uptake was observed at high Ce values. The loading of calcium ions was determined to be ca. 53.5 to 58.7 g/kg of resin when modelling only the sorption curve created at low Ce values,which exhibited a well-defined plateau. The calculated calcium ion loading capacity for DOWMAC-3 resin appeared to correlate with the manufacturer's recommendation. The phenomenon of super equivalent ion exchange (SEIX) was observed when the “driving force” for the exchange process was increased in excess of 2.25 mmol calcium ions per gram of resin in the starting solution. This latter event was explained in terms of displacement of sodium ions from sodium hydroxide solution which remained in the resin bead following the initial conversion of the as supplied “H+” exchanged resin sites to the “Na+” version required for softening studies. Evidence for hydrolysis of a small fraction of the sites on the sodium exchanged resin surface was noted. The importance of carefully choosing experimental parameters was discussed especially in relation to application of the Langmuir–Vageler expression. This latter model which compared the ratio of the initial calcium ion concentration in solution to resin mass, versus final equilibrium loading of the calcium ions on the resin; was discovered to be an excellent means of identifying the progress of the calcium–sodium ion exchange process. Moreover, the Langmuir–Vageler model facilitated standardization of various calcium–sodium ion exchange experiments which allowed systematic experimental design.
Resumo:
Biomedical systems involve a large number of entities and intricate interactions between these. Their direct analysis is, therefore, difficult, and it is often necessary to rely on computational models. These models require significant resources and parallel computing solutions. These approaches are particularly suited, given parallel aspects in the nature of biomedical systems. Model hybridisation also permits the integration and simultaneous study of multiple aspects and scales of these systems, thus providing an efficient platform for multidisciplinary research.
Resumo:
Objective To synthesise recent research on the use of machine learning approaches to mining textual injury surveillance data. Design Systematic review. Data sources The electronic databases which were searched included PubMed, Cinahl, Medline, Google Scholar, and Proquest. The bibliography of all relevant articles was examined and associated articles were identified using a snowballing technique. Selection criteria For inclusion, articles were required to meet the following criteria: (a) used a health-related database, (b) focused on injury-related cases, AND used machine learning approaches to analyse textual data. Methods The papers identified through the search were screened resulting in 16 papers selected for review. Articles were reviewed to describe the databases and methodology used, the strength and limitations of different techniques, and quality assurance approaches used. Due to heterogeneity between studies meta-analysis was not performed. Results Occupational injuries were the focus of half of the machine learning studies and the most common methods described were Bayesian probability or Bayesian network based methods to either predict injury categories or extract common injury scenarios. Models were evaluated through either comparison with gold standard data or content expert evaluation or statistical measures of quality. Machine learning was found to provide high precision and accuracy when predicting a small number of categories, was valuable for visualisation of injury patterns and prediction of future outcomes. However, difficulties related to generalizability, source data quality, complexity of models and integration of content and technical knowledge were discussed. Conclusions The use of narrative text for injury surveillance has grown in popularity, complexity and quality over recent years. With advances in data mining techniques, increased capacity for analysis of large databases, and involvement of computer scientists in the injury prevention field, along with more comprehensive use and description of quality assurance methods in text mining approaches, it is likely that we will see a continued growth and advancement in knowledge of text mining in the injury field.
Resumo:
Structural damage detection using modal strain energy (MSE) is one of the most efficient and reliable structural health monitoring techniques. However, some of the existing MSE methods have been validated for special types of structures such as beams or steel truss bridges which demands improving the available methods. The purpose of this study is to improve an efficient modal strain energy method to detect and quantify the damage in complex structures at early stage of formation. In this paper, a modal strain energy method was mathematically developed and then numerically applied to a fixed-end beam and a three-story frame including single and multiple damage scenarios in absence and presence of up to five per cent noise. For each damage scenario, all mode shapes and natural frequencies of intact structures and the first five mode shapes of assumed damaged structures were obtained using STRAND7. The derived mode shapes of each intact and damaged structure at any damage scenario were then separately used in the improved formulation using MATLAB to detect the location and quantify the severity of damage as compared to those obtained from previous method. It was found that the improved method is more accurate, efficient and convergent than its predecessors. The outcomes of this study can be safely and inexpensively used for structural health monitoring to minimize the loss of lives and property by identifying the unforeseen structural damages.