978 resultados para Stern, Menco.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The main feature of pulmonary emphysema is airflow obstruction resulting from the destruction of the alveolar walls distal to the terminal bronchioles. Existing clinical approaches have improved and extended the quality of life of emphysema patients. However, no treatment currently exists that can change the disease course and cure the patient. The different therapeutic approaches that are available aim to increase survival and/or enhance the quality of life of emphysema patients. In this context, cell therapy is a promising therapeutic approach with great potential for degenerative pulmonary diseases. In this protocol proposition, all patients will be submitted to laboratory tests, such as evaluation of heart and lung function and routine examinations. Stem cells will be harvested by means of 10 punctures on each anterior iliac crest, collecting a total volume of 200 mL bone marrow. After preparation, separation, counting and labeling (optional) of the mononuclear cells, the patients will receive an intravenous infusion from the pool of Bone Marrow Mononuclear Cells (BMMC). This article proposes a rational and safe clinical cellular therapy protocol which has the potential for developing new projects and can serve as a methodological reference for formulating clinical application protocols related to the use of cellular therapy in COPD. This study protocol was submitted and approved by the Brazilian National Committee of Ethics in Research (CONEP - Brazil) registration number 14764. It is also registered in ClinicalTrials.gov (NCT01110252). (c) 2013 Sociedade Portuguesa de Pneumologia. Published by Elsevier Espana, S.L. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The interaction of the cationic meso-tetrakis 4-N-methylpyridyl porphyrin (TMPyP) with large unilamellar vesicles (LUVs) was investigated in the present study. LUVs were formed by mixtures of the zwitterionic 1,2-dipalmitoyl-sn-glycero-phosphatidylcholine (DPPC) and anionic 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) phospholipids, at different DPPG molar percentages. All investigations were carried out above (50 degrees C) and below (25 degrees C) the main phase transition temperature of the LUVs (similar to 41 degrees C). The binding constant values, K-b, estimated from the time-resolved fluorescence study, showed a significant increase of the porphyrin affinity at higher mol% DPPG. This affinity is markedly increased when the LUVs are in the liquid crystalline state. For both situations, the increase of the K-b value was also followed by a higher porphyrin fraction bound to the LUVs. The displacement of the vesicle-bound porphyrins toward the aqueous medium, upon titration with the salt potassium chloride (KCl), was also studied. Altogether, our steady-state and frequency-domain fluorescence quenching data results indicate that the TMPyP is preferentially located at the LUVs Stern layer. This is supported by the zeta potential studies, where a partial neutralization of the LUVs surface charge, upon porphyrin titration, was observed. Dynamic light scattering (DLS) results showed that, for some phospholipid systems, this partial neutralization leads to the LUVs flocculation. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The search for reconsolidation blockers may uncover clinically relevant drugs for disrupting memories of significant stressful life experiences, such as those underlying the posttraumatic stress disorder. Considering the safety of systemically administered cannabidiol (CBD), the major non-psychotomimetic component of Cannabis sativa, to animals and humans, the present study sought to investigate whether and how this phytocannabinoid (3-30 mg/kg intraperitoneally; i.p.) could mitigate an established memory, by blockade of its reconsolidation, evaluated in a contextual fear-conditioning paradigm in rats. We report that CBD is able to disrupt 1- and 7-days-old memories when administered immediately, but not 6 h, after their retrieval for 3 min, with the dose of 10 mg/kg being the most effective. This effect persists in either case for at least 1 week, but is prevented when memory reactivation was omitted, or when the cannabinoid type-1 receptors were antagonized selectively with AM251 (1.0 mg/kg). Pretreatment with the serotonin type-1A receptor antagonist WAY100635, however, failed to block CBD effects. These results highlight that recent and older fear memories are equally vulnerable to disruption induced by CBD through reconsolidation blockade, with a consequent long-lasting relief in contextual fear-induced freezing. Importantly, this CBD effect is dependent on memory reactivation, restricted to time window of <6h, and is possibly dependent on cannabinoid type-1 receptor-mediated signaling mechanisms. We also observed that the fear memories disrupted by CBD treatment do not show reinstatement or spontaneous recovery over 22 days. These findings support the view that reconsolidation blockade, rather than facilitated extinction, accounts for the aforementioned CBD results in our experimental conditions. Neuropsychopharmacology (2012) 37, 2132-2142; doi:10.1038/npp.2012.63; published online 2 May 2012
Resumo:
A growing body of evidence indiates that carbon monoxide (CO) acts as a gas neurotransmitter within the central nervous system. Although CO has been shown to affect neurohypophyseal hormone release in response to osmotic stimuli, the precise sources, targets and mechanisms underlying the actions of CO within the magnocellular neurosecretory system remain largely unknown. In the present study, we combined immunohistochemistry and patch-clamp electrophysiology to study the cellular distribution of the CO-synthase enzyme heme oxygenase type 1 (HO-1), as well as the actions of CO on oxytocin (OT) and vasopressin (VP) magnocellular neurosecretory cells (MNCs), in euhydrated (EU) and 48-h water-deprived rats (48WD). Our results show the expression of HO-1 immunoreactivity both in OT and VP neurones, as well as in a small proportion of astrocytes, both in supraoptic (SON) and paraventricular (PVN) nuclei. HO-1 expression, and its colocalisation with OT and VP neurones within the SON and PVN, was significantly enhanced in 48WD rats. Inhibition of HO activity with chromium mesoporphyrin IX chloride (CrMP; 20 mu m) resulted in a slight membrane hyperpolarisation in SON neurones from EU rats, without significantly affecting their firing activity. In 48WD rats, on the other hand, CrMP resulted in a more robust membrane hyperpolarisation, significantly decreasing neuronal firing discharge. Taken together, our results indicate that magnocellular SON and PVN neurones express HO-1, and that CO acts as an excitatory gas neurotransmitter in this system. Moreover, we found that the expression and actions of CO were enhanced in water-deprived rats, suggesting that the state-dependent up-regulation of the HO-1/CO signalling pathway contributes to enhance MNCs firing activity during an osmotic challenge.
Resumo:
To estimate causal relationships, time series econometricians must be aware of spurious correlation, a problem first mentioned by Yule (1926). To deal with this problem, one can work either with differenced series or multivariate models: VAR (VEC or VECM) models. These models usually include at least one cointegration relation. Although the Bayesian literature on VAR/VEC is quite advanced, Bauwens et al. (1999) highlighted that "the topic of selecting the cointegrating rank has not yet given very useful and convincing results". The present article applies the Full Bayesian Significance Test (FBST), especially designed to deal with sharp hypotheses, to cointegration rank selection tests in VECM time series models. It shows the FBST implementation using both simulated and available (in the literature) data sets. As illustration, standard non informative priors are used.
Resumo:
We explore the meaning of information about quantities of interest. Our approach is divided in two scenarios: the analysis of observations and the planning of an experiment. First, we review the Sufficiency, Conditionality and Likelihood principles and how they relate to trivial experiments. Next, we review Blackwell Sufficiency and show that sampling without replacement is Blackwell Sufficient for sampling with replacement. Finally, we unify the two scenarios presenting an extension of the relationship between Blackwell Equivalence and the Likelihood Principle.
Resumo:
Little is known about the histogenesis of the odontogenic myxoma (OM). Dental pulp stem cells could be candidate precursors of OM because both OM and the dental pulp share the same embryological origin: the dental papilla. For the purpose of comparing OM and stem cells, this study analyzed the expression of two proteins related to OM invasiveness (MMP-2 and hyaluronic acid) in human immature dental pulp stern cells (hIDPSCs). Three lineages of hIDPSCs from deciduous and permanent teeth were used in this study. Immunofluorescence revealed positive reactions for MMP-2 and hyaluronic acid (HA) in all hIDPSCs. MMP-2 appeared as dots throughout the cytoplasm, whereas HA appeared either as diffuse and irregular dots or as short fibrils throughout the cytoplasm and outside the cell bodies. The gene expression profile of each cell lineage was evaluated using RT-PCR analysis, and HA was expressed more intensively than MMP-2. HA expression was similar among the three hIDPSCs lineages, whereas MMP-2 expression was higher in DL-1 than in the other cell lines. The expression of proteins related to OM invasiveness in hIDPSCs could indicate that OM originates from dental pulp stem cells.
Resumo:
This study shows that MP-1, a peptide from the venom of the Polybia paulista wasp, is more toxic to human leukemic T-lymphocytes than to human primary lymphocytes. By using model membranes and electrophysiology measurements to investigate the molecular mechanisms underlying this selective action, the porelike activity of MP-1 was identified with several bilayer compositions. The highest average conductance was found in bilayers formed by phosphatidylcholine or a mixture of phosphatidylcholine and phosphatidylserine (70:30). The presence of cholesterol or cardiolipin substantially decreases the MP-1 pore activity, suggesting that the membrane fluidity influences the mechanism of selective toxicity. The determination of partition coefficients from the anisotropy of Tip indicated higher coefficients for the anionic bilayers. The partition coefficients were found to be 1 order of magnitude smaller when the bilayers contain cholesterol or a mixture of cholesterol and sphingomyelin. The blue shift fluorescence, anisotropy values, and Stern-Volmer constants are indications of a deeper penetration of MP-1 into anionic bilayers than into zwitterionic bilayers. Our results indicate that MP-1 prefers to target leukemic cell membranes, and its toxicity is probably related to the induction of necrosis and not to DNA fragmentation. This mode of action can be interpreted considering a number of bilayer properties like fluidity, lipid charge, and domain formation. Cholesterol-containing bilayers are less fluid and less charged and have a tendency to form domains. In comparison to healthy cells, leukemic T-lymphocyte membranes are deprived of this lipid, resulting in decreased peptide binding and lower conductance. We showed that the higher content of anionic lipids increases the level of binding of the peptide to bilayers. Additionally, the absence of cholesterol resulted in enhanced pore activity. These findings may drive the selective toxicity of MP-1 to Jurkat cells.
Resumo:
Photosensitizers (PS) photodynamic activities are regulated by their location in the biological target, which modulates their photophysical and photochemical features. In this work the PS partition for the Xanthene Dyes Fluorescein (FSC), Eosin Y(EOS), Erythrosin B (ERY) and Rose Bengal B (RBB) in biomimetic models (SDS, CTAB and Pluronic P-123 micelles) and the effects on their photophysical characteristics are evaluated. The hydrophobic and electrostatic forces that govern the PS-micelle interaction are analyzed. At physiological pH (7.25), the ability of the dianionic protolytic form of the dyes to be positioned into the micelle palisade and its micelle interaction depends not only on the hydrophobicity of the dye but also on the micellar surface charge. The Binding Constants obey exactly the same order of the Partition Coefficients for the dyes in P-123 and CTAB micelles. The Stern-Volmer treatment pointed out that dyes are located inside the micelle, especially ERY and RBB. The magnitude of the dye-micelle interaction increased from SDS, P-123 and finally CTAB micelles due to the charges between dye and micelle, and among the xanthenes, their hydrophobic characteristics. Within the micelle pseudo phase, ERY and RBB are still very efficient photosensitizers exhibiting high quantum yield of singlet oxygen, which turns them very attractive especially with P-123 polymeric system as drug delivery systems in photodynamic therapy. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Stern JE, Sonner PM, Son SJ, Silva FC, Jackson K, Michelini LC. Exercise training normalizes an increased neuronal excitability of NTS-projecting neurons of the hypothalamic paraventricular nucleus in hypertensive rats. J Neurophysiol 107: 2912-2921, 2012. First published February 22, 2012; doi:10.1152/jn.00884.2011.-Elevated sympathetic outflow and altered autonomic reflexes, including impaired baroreflex function, are common findings observed in hypertensive disorders. Although a growing body of evidence supports a contribution of preautonomic neurons in the hypothalamic paraventricular nucleus (PVN) to altered autonomic control during hypertension, the precise underlying mechanisms remain unknown. Here, we aimed to determine whether the intrinsic excitability and repetitive firing properties of preautonomic PVN neurons that innervate the nucleus tractus solitarii (PVN-NTS neurons) were altered in spontaneously hypertensive rats (SHR). Moreover, given that exercise training is known to improve and/or correct autonomic deficits in hypertensive conditions, we evaluated whether exercise is an efficient behavioral approach to correct altered neuronal excitability in hypertensive rats. Patch-clamp recordings were obtained from retrogradely labeled PVN-NTS neurons in hypothalamic slices obtained from sedentary (S) and trained (T) Wistar-Kyoto (WKY) and SHR rats. Our results indicate an increased excitability of PVN-NTS neurons in SHR-S rats, reflected by an enhanced input-output function in response to depolarizing stimuli, a hyperpolarizing shift in Na+ spike threshold, and smaller hyperpolarizing afterpotentials. Importantly, we found exercise training in SHR rats to restore all these parameters back to those levels observed in WKY-S rats. In several cases, exercise evoked opposing effects in WKY-S rats compared with SHR-S rats, suggesting that exercise effects on PVN-NTS neurons are state dependent. Taken together, our results suggest that elevated preautonomic PVN-NTS neuronal excitability may contribute to altered autonomic control in SHR rats and that exercise training efficiently corrects these abnormalities.