933 resultados para Statistical factora analysis
Resumo:
Results are presented from the analysis of observations data on flash flood in Georgia over a period of 45 years, from 1961 to 2005, provided of the of Hydro-meteorology Service of Georgia.
Resumo:
Background:The radial access provides a lower risk of bleeding and vascular complications related to the puncture site in comparison to the femoral access. Recent studies have suggested a reduction in mortality associated with the radial access in patients with acute myocardial infarction undergoing percutaneous coronary intervention.Objective:To compare the occurrence of adverse cardiovascular ischemic and hemorrhagic events in patients undergoing primary angioplasty according to the type of arterial access route.Methods:From August 2010 to December 2011, 588 patients undergoing primary percutaneous coronary intervention during acute ST-segment elevation myocardial infarction were assessed; they were recruited from 47 centers participating in the ACCEPT registry. Patients were grouped and compared according to the arterial access used for the procedure.Results:The mean age was 61.8 years; 75% were males and 24% had diabetes mellitus. There was no difference between groups as regards the procedure success rate, as well as regards the occurrence of death, reinfarction, or stroke at six months of follow-up. Severe bleeding was reported in 1.1% of the sample analyzed, with no statistical difference related to the access used.Conclusions:The femoral and radial accesses are equally safe and effective for the performance of primary percutaneous coronary intervention. The low rate of cardiovascular events and of hemorrhagic complications reflects the quality of the participating centers and the operators expertise with the use of both techniques.
Resumo:
Background: Several researchers seek methods for the selection of homogeneous groups of animals in experimental studies, a fact justified because homogeneity is an indispensable prerequisite for casualization of treatments. The lack of robust methods that comply with statistical and biological principles is the reason why researchers use empirical or subjective methods, influencing their results. Objective: To develop a multivariate statistical model for the selection of a homogeneous group of animals for experimental research and to elaborate a computational package to use it. Methods: The set of echocardiographic data of 115 male Wistar rats with supravalvular aortic stenosis (AoS) was used as an example of model development. Initially, the data were standardized, and became dimensionless. Then, the variance matrix of the set was submitted to principal components analysis (PCA), aiming at reducing the parametric space and at retaining the relevant variability. That technique established a new Cartesian system into which the animals were allocated, and finally the confidence region (ellipsoid) was built for the profile of the animals’ homogeneous responses. The animals located inside the ellipsoid were considered as belonging to the homogeneous batch; those outside the ellipsoid were considered spurious. Results: The PCA established eight descriptive axes that represented the accumulated variance of the data set in 88.71%. The allocation of the animals in the new system and the construction of the confidence region revealed six spurious animals as compared to the homogeneous batch of 109 animals. Conclusion: The biometric criterion presented proved to be effective, because it considers the animal as a whole, analyzing jointly all parameters measured, in addition to having a small discard rate.
Resumo:
Abstract Clinical decision-making requires synthesis of evidence from literature reviews focused on a specific theme. Evidence synthesis is performed with qualitative assessments and systematic reviews of randomized clinical trials, typically covering statistical pooling with pairwise meta-analyses. These methods include adjusted indirect comparison meta-analysis, network meta-analysis, and mixed-treatment comparison. These tools allow synthesis of evidence and comparison of effectiveness in cardiovascular research.
Resumo:
This paper deals about the nematocysts like a source of biometric information for comparison between the species Hydra vulgaris Pallas, 1766, Hydra vulgaris pedunculata Deserti et al., 2011 and Hydra pseudoligactis (Hyman, 1931). This biometric tool lets us carry out statistical comparisons and adding these results to the identification of specimens from different classificatory groups. In this particular study, we obtained significant differences between species, individuals of each species and nematocysts type when compared the biometry of its nematocysts. Another result was the variation in of particular nematocysts, like atrichous isorhiza and holotrichous isorhiza for the species H. vulgaris in relation to the column size.
Resumo:
Introduction: Non-invasive brain imaging techniques often contrast experimental conditions across a cohort of participants, obfuscating distinctions in individual performance and brain mechanisms that are better characterised by the inter-trial variability. To overcome such limitations, we developed topographic analysis methods for single-trial EEG data [1]. So far this was typically based on time-frequency analysis of single-electrode data or single independent components. The method's efficacy is demonstrated for event-related responses to environmental sounds, hitherto studied at an average event-related potential (ERP) level. Methods: Nine healthy subjects participated to the experiment. Auditory meaningful sounds of common objects were used for a target detection task [2]. On each block, subjects were asked to discriminate target sounds, which were living or man-made auditory objects. Continuous 64-channel EEG was acquired during the task. Two datasets were considered for each subject including single-trial of the two conditions, living and man-made. The analysis comprised two steps. In the first part, a mixture of Gaussians analysis [3] provided representative topographies for each subject. In the second step, conditional probabilities for each Gaussian provided statistical inference on the structure of these topographies across trials, time, and experimental conditions. Similar analysis was conducted at group-level. Results: Results show that the occurrence of each map is structured in time and consistent across trials both at the single-subject and at group level. Conducting separate analyses of ERPs at single-subject and group levels, we could quantify the consistency of identified topographies and their time course of activation within and across participants as well as experimental conditions. A general agreement was found with previous analysis at average ERP level. Conclusions: This novel approach to single-trial analysis promises to have impact on several domains. In clinical research, it gives the possibility to statistically evaluate single-subject data, an essential tool for analysing patients with specific deficits and impairments and their deviation from normative standards. In cognitive neuroscience, it provides a novel tool for understanding behaviour and brain activity interdependencies at both single-subject and at group levels. In basic neurophysiology, it provides a new representation of ERPs and promises to cast light on the mechanisms of its generation and inter-individual variability.
Resumo:
This paper reports on: (a) new primary source evidence on; and (b) statistical and econometric analysis of high technology clusters in Scotland. It focuses on the following sectors: software, life sciences, microelectronics, optoelectronics, and digital media. Evidence on a postal and e-mailed questionnaire is presented and discussed under the headings of: performance, resources, collaboration & cooperation, embeddedness, and innovation. The sampled firms are characterised as being small (viz. micro-firms and SMEs), knowledge intensive (largely graduate staff), research intensive (mean spend on R&D GBP 842k), and internationalised (mainly selling to markets beyond Europe). Preliminary statistical evidence is presented on Gibrat’s Law (independence of growth and size) and the Schumpeterian Hypothesis (scale economies in R&D). Estimates suggest a short-run equilibrium size of just 100 employees, but a long-run equilibrium size of 1000 employees. Further, to achieve the Schumpeterian effect (of marked scale economies in R&D), estimates suggest that firms have to grow to very much larger sizes of beyond 3,000 employees. We argue that the principal way of achieving the latter scale may need to be by takeovers and mergers, rather than by internally driven growth.
Resumo:
This paper seeks to identify whether there is a representative empirical Okun’s Law coefficient (OLC) and to measure its size. We carry out a meta regression analysis on a sample of 269 estimates of the OLC to uncover reasons for differences in empirical results and to estimate the ‘true’ OLC. On statistical (and other) grounds, we find it appropriate to investigate two separate subsamples, using respectively (some measure of) unemployment or output as dependent variable. Our results can be summarized as follows. First, there is evidence of type II publication bias in both sub-samples, but a type I bias is present only among the papers using some measure of unemployment as the dependent variable. Second, after correction for publication bias, authentic and statistically significant OLC effects are present in both sub-samples. Third, bias-corrected estimated true OLCs are significantly lower (in absolute value) with models using some measure of unemployment as the dependent variable. Using a bivariate MRA approach, the estimated true effects are -0.25 for the unemployment sub-sample and -0.61 for the output-sub sample; with a multivariate MRA methodology, the estimated true effects are -0.40 and -1.02 for the unemployment and the output-sub samples respectively.
Resumo:
A statistical methodology is developed by which realised outcomes can be used to identify, for calendar years between 1974 and 2012, when policy makers in ‘advanced’ economies have successfully pursued single objectives of different kinds, or multiple objectives. A simple criterion is then used to distinguish between multiple objectives pure and simple and multiple objectives subject to a price stability constraint. The overall and individual country results which this methodology produces seem broadly plausible. Unconditional and conditional analyses of the inflation and growth associated with different types of objectives reveal that multiple objectives subject to a price stability constraint are associated with roughly as good economic performance as the single objective of inflation. A proposal is then made as to how the remit of an inflation-targeting central bank could be adjusted to allow it to pursue other objectives in extremis without losing the credibility effects associated with inflation targeting.
Resumo:
In this study we propose an application of the MuSIASEM approach which is used to provide an integrated analysis of Laos across different scales. With the term “integrated analysis across scales” we mean the generation of a series of packages of quantitative indicators, characterizing the performance of the socioeconomic activities performed in Laos when considering: (i) different hierarchical levels of organization (farming systems described at the level of household, rural villages, regions of Laos, the whole country level); and (ii) different dimensions of analysis (economic dimension, social dimension, ecological dimension, technical dimension). What is relevant in this application is that the information carried out by these different packages of indicators is integrated in a system of accounting which establishes interlinkages across these indicators. This is a essential feature to study sustainability trade-offs and to build more robust scenarios of possible changes. The multi-scale integrated representation presented in this study is based on secondary data (gathered in a three year EU project – SEAtrans and integrated by other available statistical sources) and it is integrated in GIS, when dealing with the spatial representation of Laos. However, even if we use data referring to Laos, the goal of this study is not that of providing useful information about a practical policy issue of Laos, but rather, to illustrate the possibility of using a multipurpose grammar to produce an integrated set of sustainability indicators at three different levels: (i) local; (ii) meso; (iii) macro level. The technical issue addressed is the simultaneous adoption of two multi-level matrices – one referring to a characterization of human activity over a set of different categories, and another referring to a characterization of land uses over the same set of categories. In this way, it becomes possible to explain the characteristics of Laos (an integrated set of indicators defining the performance of the whole country) in relation to the characteristics of the rural Laos and urban Laos. The characteristics of rural Laos, can be explained using the characteristics of three regions defined within Laos (Northern Laos, Central Laos and Southern Laos), which in turn can be defined (using an analogous package of indicators), starting from the characteristics of three main typologies of farming systems found in the regions.
Resumo:
The aim of this work is to evaluate the capabilities and limitations of chemometric methods and other mathematical treatments applied on spectroscopic data and more specifically on paint samples. The uniqueness of the spectroscopic data comes from the fact that they are multivariate - a few thousands variables - and highly correlated. Statistical methods are used to study and discriminate samples. A collection of 34 red paint samples was measured by Infrared and Raman spectroscopy. Data pretreatment and variable selection demonstrated that the use of Standard Normal Variate (SNV), together with removal of the noisy variables by a selection of the wavelengths from 650 to 1830 cm−1 and 2730-3600 cm−1, provided the optimal results for infrared analysis. Principal component analysis (PCA) and hierarchical clusters analysis (HCA) were then used as exploratory techniques to provide evidence of structure in the data, cluster, or detect outliers. With the FTIR spectra, the Principal Components (PCs) correspond to binder types and the presence/absence of calcium carbonate. 83% of the total variance is explained by the four first PCs. As for the Raman spectra, we observe six different clusters corresponding to the different pigment compositions when plotting the first two PCs, which account for 37% and 20% respectively of the total variance. In conclusion, the use of chemometrics for the forensic analysis of paints provides a valuable tool for objective decision-making, a reduction of the possible classification errors, and a better efficiency, having robust results with time saving data treatments.
Resumo:
Prior genome-wide association studies (GWAS) of major depressive disorder (MDD) have met with limited success. We sought to increase statistical power to detect disease loci by conducting a GWAS mega-analysis for MDD. In the MDD discovery phase, we analyzed more than 1.2 million autosomal and X chromosome single-nucleotide polymorphisms (SNPs) in 18 759 independent and unrelated subjects of recent European ancestry (9240 MDD cases and 9519 controls). In the MDD replication phase, we evaluated 554 SNPs in independent samples (6783 MDD cases and 50 695 controls). We also conducted a cross-disorder meta-analysis using 819 autosomal SNPs with P<0.0001 for either MDD or the Psychiatric GWAS Consortium bipolar disorder (BIP) mega-analysis (9238 MDD cases/8039 controls and 6998 BIP cases/7775 controls). No SNPs achieved genome-wide significance in the MDD discovery phase, the MDD replication phase or in pre-planned secondary analyses (by sex, recurrent MDD, recurrent early-onset MDD, age of onset, pre-pubertal onset MDD or typical-like MDD from a latent class analyses of the MDD criteria). In the MDD-bipolar cross-disorder analysis, 15 SNPs exceeded genome-wide significance (P<5 × 10(-8)), and all were in a 248 kb interval of high LD on 3p21.1 (chr3:52 425 083-53 822 102, minimum P=5.9 × 10(-9) at rs2535629). Although this is the largest genome-wide analysis of MDD yet conducted, its high prevalence means that the sample is still underpowered to detect genetic effects typical for complex traits. Therefore, we were unable to identify robust and replicable findings. We discuss what this means for genetic research for MDD. The 3p21.1 MDD-BIP finding should be interpreted with caution as the most significant SNP did not replicate in MDD samples, and genotyping in independent samples will be needed to resolve its status.
Resumo:
Limited information is available regarding the methodology required to characterize hashish seizures for assessing the presence or the absence of a chemical link between two seizures. This casework report presents the methodology applied for assessing that two different police seizures were coming from the same block before this latter one was split. The chemical signature was extracted using GC-MS analysis and the implemented methodology consists in a study of intra- and inter-variability distributions based on the measurement of the chemical profiles similarity using a number of hashish seizures and the calculation of the Pearson correlation coefficient. Different statistical scenarios (i.e., a combination of data pretreatment techniques and selection of target compounds) were tested to find the most discriminating one. Seven compounds showing high discrimination capabilities were selected on which a specific statistical data pretreatment was applied. Based on the results, the statistical model built for comparing the hashish seizures leads to low error rates. Therefore, the implemented methodology is suitable for the chemical profiling of hashish seizures.
Resumo:
According to the most widely accepted Cattell-Horn-Carroll (CHC) model of intelligence measurement, each subtest score of the Wechsler Intelligence Scale for Adults (3rd ed.; WAIS-III) should reflect both 1st- and 2nd-order factors (i.e., 4 or 5 broad abilities and 1 general factor). To disentangle the contribution of each factor, we applied a Schmid-Leiman orthogonalization transformation (SLT) to the standardization data published in the French technical manual for the WAIS-III. Results showed that the general factor accounted for 63% of the common variance and that the specific contributions of the 1st-order factors were weak (4.7%-15.9%). We also addressed this issue by using confirmatory factor analysis. Results indicated that the bifactor model (with 1st-order group and general factors) better fit the data than did the traditional higher order structure. Models based on the CHC framework were also tested. Results indicated that a higher order CHC model showed a better fit than did the classical 4-factor model; however, the WAIS bifactor structure was the most adequate. We recommend that users do not discount the Full Scale IQ when interpreting the index scores of the WAIS-III because the general factor accounts for the bulk of the common variance in the French WAIS-III. The 4 index scores cannot be considered to reflect only broad ability because they include a strong contribution of the general factor.