960 resultados para Standard error
Resumo:
Ocean acidification is predicted to have severe consequences for calcifying marine organisms especially molluscs. Recent studies, however, have found that molluscs in marine environments with naturally elevated or fluctuating CO2 or with an active, high metabolic rate lifestyle may have a capacity to acclimate and be resilient to exposures of elevated environmental pCO2. The aim of this study was to determine the effects of near future concentrations of elevated pCO2 on the larval and adult stages of the mobile doughboy scallop, Mimachlamys asperrima from a subtidal and stable physio-chemical environment. It was found that fertilisation and the shell length of early larval stages of M. asperrima decreased as pCO2 increased, however, there were less pronounced effects of elevated pCO2 on the shell length of later larval stages, with high pCO2 enhancing growth in some instances. Byssal attachment and condition index of adult M. asperrima decreased with elevated pCO2, while in contrast there was no effect on standard metabolic rate or pHe. The responses of larval and adult M. asperrima to elevated pCO2 measured in this study were more moderate than responses previously reported for intertidal oysters and mussels. Even this more moderate set of responses are still likely to reduce the abundance of M. asperrima and potentially other scallop species in the world's oceans at predicted future pCO2 levels.
Resumo:
1. Developing a framework for assessing interactions between multiple anthropogenic stressors remains an important goal in environmental research. In coastal ecosystems, the relative effects of aspects of global climate change (e.g. CO2 concentrations) and localized stressors (e.g. eutrophication), in combination, have received limited attention. 2. Using a long-term (11 month) field experiment, we examine how epiphyte assemblages in a tropical seagrass meadow respond to factorial manipulations of dissolved carbon dioxide (CO2(aq)) and nutrient enrichment. In situ CO2(aq) manipulations were conducted using clear, open-top chambers, which replicated carbonate parameter forecasts for the year 2100. Nutrient enrichment consisted of monthly additions of slow-release fertilizer, nitrogen (N) and phosphorus (P), to the sediments at rates equivalent to theoretical maximum rates of anthropogenic loading within the region (1.54 g N/m**2/d and 0.24 g P m**2/d). 3. Epiphyte community structure was assessed on a seasonal basis and revealed declines in the abundance of coralline algae, along with increases in filamentous algae under elevated CO2(aq). Surprisingly, nutrient enrichment had no effect on epiphyte community structure or overall epiphyte loading. Interactions between CO2(aq) and nutrient enrichment were not detected. Furthermore, CO2(aq)-mediated responses in the epiphyte community displayed strong seasonality, suggesting that climate change studies in variable environments should be conducted over extended time-scales. 4. Synthesis. The observed responses indicate that for certain locations, global stressors such as ocean acidification may take precedence over local eutrophication in altering the community structure of seagrass epiphyte assemblages. Given that nutrient-driven algal overgrowth is commonly cited as a widespread cause of seagrass decline, our findings highlight that alternate climate change forces may exert proximate control over epiphyte community structure.
Resumo:
Two of the major threats to coral reefs are increasing sea surface temperature and ocean acidification, both of which result from rising concentrations of atmospheric carbon dioxide (CO2). Recent evidence suggests that both increased water temperature and elevated levels of dissolved CO2 can change the behaviors of fishes in ways that reduce individual fitness, however the interacting effects of these variables are unknown. We used a fully factorial experiment to test the independent and interactive effects of temperature (3 levels: 28.5, 30, and 31.5 °C) and pCO2 (3 levels: averaging 420, 530, and 960 µatm) on food consumption and activity level of juvenile anemonefish Amphiprion melanopus (Bleeker 1852). Experimental levels were consistent with current-day ocean conditions and predictions for mid-century and late-century based on atmospheric CO2 projections. Sibling fish were reared for 21 days from the end of their larval phase in each of the nine treatments, at which time behavioral observations were conducted. Food consumption and foraging activity decreased at the highest temperature. In isolation, CO2 level did not significantly affect behavior; however, there was an interaction with temperature. While rearing at high temperature (31.5 °C) and control (420 µatm) or moderate (530 µatm) CO2 resulted in a reduction of food consumption and foraging activity, rearing at high temperature and high CO2 (960 µatm) resulted in an elevation in these behaviors. Maintaining food consumption and foraging activity in high temperature and CO2 conditions may reduce energy efficiency if the thermal optimum for food assimilation and growth has been exceeded. Maintaining foraging effort might increase predation vulnerability. These results suggest that changes in foraging behaviors caused by the interactive effects of increased SST and CO2 could have significant effects on the growth and survival of juvenile reef fishes by late century.
Resumo:
Global environmental changes, including ocean acidification, have been identified as a major threat to scleractinian corals. General predictions are that ocean acidification will be detrimental to reef growth and that 40 to more than 80 per cent of present-day reefs will decline during the next 50 years. Cold-water corals (CWCs) are thought to be strongly affected by changes in ocean acidification owing to their distribution in deep and/or cold waters, which naturally exhibit a CaCO3 saturation state lower than in shallow/warm waters. Calcification was measured in three species of Mediterranean cold-water scleractinian corals (Lophelia pertusa, Madrepora oculata and Desmophyllum dianthus) on-board research vessels and soon after collection. Incubations were performed in ambient sea water. The species M. oculata was additionally incubated in sea water reduced or enriched in CO2. At ambient conditions, calcification rates ranged between -0.01 and 0.23% d-1. Calcification rates of M. oculata under variable partial pressure of CO2 (pCO2) were the same for ambient and elevated pCO2 (404 and 867 µatm) with 0.06 ± 0.06% d-1, while calcification was 0.12 ± 0.06% d-1 when pCO2 was reduced to its pre-industrial level (285 µatm). This suggests that present-day CWC calcification in the Mediterranean Sea has already drastically declined (by 50%) as a consequence of anthropogenic-induced ocean acidification.
Resumo:
Vermetids form reefs in sub-tropical and warm-temperate waters that protect coasts from erosion, regulate sediment transport and accumulation, serve as carbon sinks and provide habitat for other species. The gastropods that form these reefs brood encapsulated larvae; they are threatened by rapid environmental changes since their ability to disperse is very limited. We used transplant experiments along a natural CO2 gradient to assess ocean acidification effects on the reef-building gastropod Dendropoma petraeum. We found that although D. petraeum were able to reproduce and brood at elevated levels of CO2, recruitment success was adversely affected. Long-term exposure to acidified conditions predicted for the year 2100 and beyond caused shell dissolution and a significant increase in shell Mg content. Unless CO2 emissions are reduced and conservation measures taken, our results suggest these reefs are in danger of extinction within this century, with significant ecological and socioeconomic ramifications for coastal systems.
Resumo:
Increased atmospheric carbon dioxide leads to ocean acidification and carbon dioxide (CO2) enrichment of seawater. Given the important ecological functions of seagrass meadows, understanding their responses to CO2 will be critical for the management of coastal ecosystems. This study examined the physiological responses of three tropical seagrasses to a range of seawater pCO2 levels in a laboratory. Cymodocea serrulata, Halodule uninervis and Thalassia hemprichii were exposed to four different pCO2 treatments (442-1204 µatm) for 2 weeks, approximating the range of end-of-century emission scenarios. Photosynthetic responses were quantified using optode-based oxygen flux measurements. Across all three species, net productivity and energetic surplus (PG:R) significantly increased with a rise in pCO2 (linear models, P < 0.05). Photosynthesis-irradiance curve-derived photosynthetic parameters-maximum photosynthetic rates (P max) and efficiency (alpha) also increased as pCO2 increased (linear models, P < 0.05). The response for productivity measures was similar across species, i.e. similar slopes in linear models. A decrease in compensation light requirement (Ec) with increasing pCO2 was evident in C. serrulata and H. uninervis, but not in T. hemprichii. Despite higher productivity with pCO2 enrichment, leaf growth rates in C. serrulata did not increase, while those in H. uninervis and T. hemprichii significantly increased with increasing pCO2 levels. While seagrasses can be carbon-limited and productivity can respond positively to CO2 enrichment, varying carbon allocation strategies amongst species suggest differential growth response between species. Thus, future increase in seawater CO2 concentration may lead to an overall increase in seagrass biomass and productivity, as well as community changes in seagrass meadows.